Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Role of the mitochondrial genome in assisted reproductive technologies and embryonic stem cell-based therapeutic cloning

Carol A. Brenner A D E , H. Michael Kubisch B and Kenneth E. Pierce C
+ Author Affiliations
- Author Affiliations

A University of New Orleans, New Orleans, LA 70148, USA.

B Tulane National Primate Research Center, Covington, LA 70433, USA.

C Department of Biology, Brandeis University, Waltham, MA 02454, USA.

D Tulane Institute for Reproductive Medicine, Center for Excellence in Women’s Health, New Orleans, LA 70112, USA.

E To whom correspondence should be addressed. email: cbrenner@uno.edu

Reproduction, Fertility and Development 16(7) 743-751 https://doi.org/10.1071/RD04107
Submitted: 29 September 2004  Accepted: 19 October 2004   Published: 9 December 2004

Abstract

Mitochondria play a pivotal role in cellular metabolism and are important determinants of embryonic development. Mitochondrial function and biogenesis rely on an intricate coordination of regulation and expression of nuclear and mitochondrial genes. For example, several nucleus-derived transcription factors, such as mitochondrial transcription factor A, are required for mitochondrial DNA replication. Mitochondrial inheritance is strictly maternal while paternally-derived mitochondria are selectively eliminated during early embryonic cell divisions. However, there are reports from animals as well as human patients that paternal mitochondria can occasionally escape elimination, which in some cases has led to severe pathologies. The resulting existence of different mitochondrial genomes within the same cell has been termed mitochondrial heteroplasmy. The increasing use of invasive techniques in assisted reproduction in humans has raised concerns that one of the outcomes of such techniques is an increase in the incidence of mitochondrial heteroplasmy. Indeed, there is evidence that heteroplasmy is a direct consequence of ooplasm transfer, a technique that was used to ‘rescue’ oocytes from older women by injecting ooplasm from young oocytes. Mitochondria from donor and recipient were found in varying proportions in resulting children. Heteroplasmy is also a byproduct of nuclear transfer, as has been shown in studies on cloned sheep, cattle and monkeys. As therapeutic cloning will depend on nuclear transfer into oocytes and the subsequent generation of embryonic stem cells from resulting blastocysts, the prospect of mitochondrial heteroplasmy and its potential problems necessitate further studies in this area.

Extra keywords: assisted reproductive technologies, cytoplasmic transfer, embryonic stem cells, mitochondrial heteroplasmy, mitochondrial transcription factors.


References

Alam, T. I. , Kanki, K. , Muta, T. , Ukaji, K. , Abe, Y. , Nakayama, H. , Takio, K. , Hamasaki, N. , and Kang, D. (2003). Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 31, 1640–1645.
Crossref | GoogleScholarGoogle Scholar | PubMed | Brenner C. A., Barritt J. A., Cohen J., and Pierce K. E. (2001). Quantification of mitochondrial DNA heteroplasmy following ooplasmic transplantation. In ‘17th Annual Meeting of the European Society of Human Reproduction and Embryology’. (Ed. D. H. Barlow.) p. 68, abstract O-166. (Oxford University Press: Lausanne, Switzerland.)

Clayton, D. A. (2000). Transcription and replication of mitochondrial DNA. Hum. Reprod. 15((Suppl. 2)), 11–17.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cohen, J. , Scott, R. , Schimmel, T. , Levron, J. , and Willadsen, S. (1997). Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 350, 186–187.
PubMed |

Cohen, J. , Scott, R. , Alikani, M. , Schimmel, T. , Munne, S. , Levron, J. , Wu, L. , Brenner, C. , Warner, C. , and Willadsen, S. (1998). Ooplasmic transfer in mature human oocytes. Mol. Hum. Reprod. 4, 269–280.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cummins, J. M. (2000). Fertilization and elimination of the paternal mitochondrial genome. Hum. Reprod. 15 (Suppl. 2), 92–101.
PubMed |

Cummins, J. M. (2001a). Cytoplasmic inheritance and its implications for animal biotechnology. Theriogenology 55, 1381–1399.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cummins, J. M. (2001b). Mitochondria: potential roles in embryogenesis and nucleocytoplasmic transfer. Hum. Reprod. Update 7, 217–228.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cummins, J. M. (2002). The role of maternal mitochondria during oogenesis, fertilization and embryogenesis. Reprod. Biomed. Online 4, 176–182.
PubMed |

Cummins, J. M. (2004). The role of mitochondria in the establishment of oocyte functional competence. Eur. J. Obstet. Gynecol. Reprod. Biol. 115((Suppl. 1)), S23–S29.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Garesse, R. , and Vallejo, C. G. (2001). Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263, 1–16.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Giles, R. E. , Blanc, H. , Cann, H. M. , and Wallace, D. C. (1980). Maternal inheritance of human mitochondrial DNA. Proc. Natl Acad. Sci. USA 77, 6715–6719.
PubMed |

Hiendleder, S. , and Wolf, E. (2003). The mitochondrial genome in embryo technologies. Reprod. Domest. Anim. 38, 290–304.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hiendleder, S. , Schmutz, S. M. , Erhardt, G. , Green, R. D. , and Plante, Y. (1999). Transmitochondrial differences and varying levels of heteroplasmy in nuclear transfer cloned cattle. Mol. Reprod. Dev. 54, 24–31.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hwang, W. S. , Ryr, Y. J. , Park, J. H. , Park, E. S. , Lee, E. G. , Koo, J. M. , Jeon, H. Y. , Lee, B. C. , Kang, S. K. , Kim, S. J. , Ahn, C. , Hwang, J. H. , Park, K. Y. , Cibelli, J. B. , and Moon, S. Y. (2004). Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303, 1669–1674.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jaenisch, R. , and Wilmut, I. (2001). Developmental Biology. Don’t clone humans! Science 291, 2552.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kelly, D. P. , and Scarpulla, R. C. (2004). Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 357–368.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Larsson, N. G. , Wang, J. , Wilhelmsson, H. , Olddors, A. , Rustin, P. , Lewandoski, M. , Barsh, G. S. , and Clayton, D. A. (1998). Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ludwig, T. E. , Squirrell, J. M. , Palmenberg, A. C. , and Bavister, B. D. (2001). Relationship between development, metabolism and mitochondrial organization in 2-cell hamster embryos in the presence of low levels of phosphate. Biol. Reprod. 65, 1648–1654.
PubMed |

May-Panloup, P. , Chretien, M. , Savagner, F. , Vasseur, C. , Jean, M. , Malthiery, Y. , and Reynier, P. (2003). Increased sperm mitochondrial DNA content in male infertility. Hum. Reprod. 18, 550–556.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McKiernan, S. H. , Bavister, B. D. , and Tasca, R. J. (1991). Energy substrate requirements for in-vitro development of hamster 1- and 2-cell embryos to the blastocyst stage. Hum. Reprod. 6, 64–75.
PubMed |

Mitalipov, S. M. , Yeoman, R. R. , Nussr, K. D. , and Wolf, D. (2002). Rhesus monkeys produced by nuclear transfer from embryonic or somatic cells. Biol. Reprod. 66, 1367–1373.
PubMed |

Pierce, K. E. , Rice, J. E. , Sanchez, J. A. , Brenner, C. , and Wangh, L. J. (2000). Real-time PCR using molecular beacons for accurate detection of the Y chromosome in single human blastomeres. Mol. Hum. Reprod. 6, 1155–1164.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pierce, K. E. , Barritt, J. A. , Cohen, J. , and Brenner, C. A. (2001). Inheritance of donor versus recipient mitochondrial populations in human offspring derived from ooplasmic transplantation. Fertil. Steril. 76, S55–S56.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Poyton, R. O. , and McEwen, J. E. (1996). Crosstalk between nuclear and mitochondrial genomes. Annu. Rev. Biochem. 65, 563–607.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schwartz, M. , and Vissing, J. (2002). Paternal inheritance of mitochondrial DNA. N. Engl. J. Med. 347, 576–580.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Squirrell, J. M. , Lane, M. , and Bavister, B. D. (2001). Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol. Reprod. 64, 1845–1854.
PubMed |

Squirrell, J. M. , Schramm, R. D. , Paprocki, A. M. , Wokosin, D. L. , and Bavister, B. D. (2003). Imaging mitochondrial organization in living primate oocytes and embryos using multiphoton microscopy. Microsc. Microanal. 9, 190–201.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Steinborn, R. , Schinogl, P. , Zakhartchenko, V. , Achmann, R. , Schernthaner, W. , and Stojkovic, M. (2000). Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nat. Genet. 25, 255–257.
Crossref | GoogleScholarGoogle Scholar | PubMed |

St John, J. C. (2002). The transmission of mitochondrial DNA following assisted reproductive techniques. Theriogenology 57, 109–123.
Crossref | GoogleScholarGoogle Scholar | PubMed |

St John, J. C. , and De Jonge, C. (2000). A hypothesis for transmission of paternal mitochondrial DNA. Reprod. Med. Rev. 8, 173–185.
Crossref | GoogleScholarGoogle Scholar |

St John, J. C. , and Schatten, G. (2004). Paternal mitochondrial DNA transmission during nonhuman primate nuclear transfer. Genetics 167, 897–905.
Crossref | GoogleScholarGoogle Scholar | PubMed |

St John, J. C. , Cooke, I. D. , and Barratt, C. L. (1997). Mitochondrial mutations and male infertility. Nat. Med. 3, 124–125.
Crossref | GoogleScholarGoogle Scholar |

St John, J. C. , Sakkas, D. , Dimitriadi, K. , Barnes, A. , Maclin, V. , Ramey, J. , Barratt, C. , and De Jonge, C. (2000). Failure of elimination of paternal mitochondrial DNA in abnormal embryos. Lancet 355, 200.
Crossref | GoogleScholarGoogle Scholar |

Sutovsky, P. (2003). Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: Killing three birds with one stone. Microsc. Res. Tech. 61, 88–102.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sutovsky, P. , and Schatten, G. (2000). Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Intl Rev. Cytol. 195, 1–65.


Sutovsky, P. , Moreno, R. , Ramalho-Santos, J. , Dominko, T. , Simerly, C. , and Schatten, G. (2000). Ubiquitinated sperm mitochondria, selective proteolysis, and the mitochondrial inheritance in mammalian embryos. Biol. Reprod. 63, 582–590.
PubMed |

Sutovsky, P. , Moreno, R. , Ramalho-Santos, J. , Dominko, T. , Winston, W. E. , and Schatten, G. (2001). Putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J. Cell Sci. 114, 1665–1675.
PubMed |

Takeda, K. , Takahashi, S. , Onishi, A. , Goto, Y. , Miyazawa, A. , and Imai, H. (1999). Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer. J. Reprod. Fertil. 116, 253–259.
PubMed |

Takeda, K. , Akagi, S. , Kaneyama, K. , Kojima, T. , Takahashi, S. , Imai, H. , Yamanaka, M. , Onishi, A. , and Hanada, H. (2003). Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Mol. Reprod. Dev. 64, 429–437.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thorburn, D. R. , and Dahl, H. H. (2001). Mitochondrial disorders: genetics, counseling, prenatal diagnosis and reproductive options. Am. J. Med. Genet. 106, 102–114.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Van Blerkom, J. , Sinclair, J. , and Davis, P. (1998). Mitochondrial transfer between oocytes: potential applications of mitochondrial donation and the issue of heteroplasmy. Hum. Reprod. 13, 2857–2868.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, J. , Wang, C. W. , Krey, L. , Liu, H. , Meng, L. , Blaszczyk, A. , Adler, A. , and Grifo, J. (1999). In vitro maturation of human preovulatory oocytes reconstructed by germinal vesicle transfer. Fertil. Steril. 71, 726–731.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zhang, J. , Guanglun, Z. , Yong Zeng, Y. , Acosta, C. , Shu, Y. , and Grifo, J. (2003). Pregnancy derived from human nuclear transfer. Fertil. Steril. 80((Suppl. 3)), 56.
Crossref | GoogleScholarGoogle Scholar |

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.
Crossref | GoogleScholarGoogle Scholar | PubMed |