Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

15-Deoxy-Δ12,14-prostaglandin J2 and peroxisome proliferator-activated receptor γ (PPARγ) levels in term placental tissues from control and diabetic rats: modulatory effects of a PPARγ agonist on nitridergic and lipid placental metabolism

E. Capobianco A , A. Jawerbaum A C , M. C. Romanini B , V. White A , C. Pustovrh A , R. Higa A , N. Martinez A , M. T. Mugnaini B , C. Soñez B and E. Gonzalez A
+ Author Affiliations
- Author Affiliations

A Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Serrano 669, (1414) Buenos Aires, Argentina.

B Departamento de Anatomía Animal, Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, (5800) Córdoba, Argentina.

C Corresponding author. Email: a.jawerbaum@abaconet.com.ar

Reproduction, Fertility and Development 17(4) 423-433 https://doi.org/10.1071/RD04067
Submitted: 30 June 2004  Accepted: 18 December 2004   Published: 15 March 2005

Abstract

15-Deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) is a peroxisome proliferator-activated receptor γ (PPARγ) ligand that regulates lipid homeostasis and has anti-inflammatory properties in many cell types. We postulated that 15dPGJ2 may regulate lipid homeostasis and nitric oxide (NO) levels in term placental tissues and that alterations in these pathways may be involved in diabetes-induced placental derangements. In the present study, we observed that, in term placental tissues from streptozotocin-induced diabetic rats, 15dPGJ2 concentrations were decreased (83%) and immunostaining for nitrotyrosine, indicating peroxynitrite-induced damage, was increased. In the presence of 15dPGJ2, concentrations of nitrates/nitrites (an index of NO production) were diminished (40%) in both control and diabetic rats, an effect that seems to be both dependent on and independent of PPARγ activation. Exogenous 15dPGJ2 did not modify lipid mass, but decreased the incorporation of 14C-acetate into triacylglycerol (35%), cholesteryl ester (55%) and phospholipid (32%) in placenta from control rats, an effect that appears to be dependent on PPARγ activation. In contrast, the addition of 15dPGJ2 did not alter de novo lipid synthesis in diabetic rat placenta, which showed decreased levels of PPARγ. We conclude that 15dPGJ2 modulates placental lipid metabolism and NO production. The concentration and function of 15dPGJ2 and concentrations of PPARγ were altered in placentas from diabetic rats, anomalies probably involved in diabetes-induced placental dysfunction.


Acknowledgments

This work was supported by grants PIP 0598/98 (E. G.) and PIP 2529/99 (A. J.) from Consejo Nacional de Investigaciones Científicas y Técnicas and by Agencia de Promoción Científica y Tecnológica de Argentina (PICT 05-10652; E. G.). The authors thank María Ester Castro for her expert technical assistance.


References

Al-Okail, M. S. , and Al-Attas, O. S. (1994). Histological changes in placental syncytiotrophoblasts of poorly controlled gestational diabetic patients. Endocr. J. 41, 355–360.
PubMed |

Asami-Miyagishi, R. , Iseki, S. , Usui, M. , Uchida, K. , Kubo, H. , and Morita, I. (2004). Expression and function of PPARγ in rat placental development. Biochem. Biophys. Res. Commun. 315, 497–501.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Barak, Y. , Nelson, M. C. , Ong, E. S. , Jones, Y. Z. , Ruiz-Lozano, P. , Chien, K. R. , Koder, A. , and Evans, R. M. (1999). PPARgamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595.
PubMed |

Beckman, J. S. , and Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am. J. Physiol. 271, C1424–C1437.
PubMed |

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
PubMed |

Capobianco, E. , Jawerbaum, A. , White, V. , Pustovrh, C. , Sinner, D. , and Gonzalez, E. (2003). Elevated levels of endothelin-1 and prostaglandin E2 and their effect over nitric oxide generation in placental tissue from neonatal streptozotocin induced diabetic rats. Prostaglandins Leukot. Essent. Fatty Acids 68, 225–231.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Capparuccia, L. , Marzioni, D. , Giordano, A. , Fazioli, F. , De Nictolis, M. , Busso, N. , Todros, T. , and Castelluci, M. (2002). PPARγ expression in normal human placenta, hydatidiform mole and choriocarcinoma. Mol. Hum. Reprod. 8, 574–579.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Catalano, P. , Nizielski, S. , Shao, J. , Preston, L. , Qiao, L. , and Friedman, J. (2002). Downregulated IRS-1 and PPARγ in obese women with gestational diabetes: relationship to FFA during pregnancy. Am. J. Physiol. Endocrinol. Metab. 282, E522–E533.
PubMed |

Coughlan, M. T. , Vervaart, V. T. , Permezel, M. , Georgiou, H. M. , and Rice, G. E. (2004). Altered placental oxidative stress status in gestational diabetes mellitus. Placenta 25, 78–84.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Desoye, G. , and Shafrir, E. (1994). Placental metabolism and its regulation in health and diabetes. Mol. Aspects Med. 15, 505–682.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Desoye, G. , and Shafrir, E. (1996). The human placenta in diabetic pregnancy. Diabetes Rev. 4, 70–89.


Diamant, Y. Z. , and Shafrir, E. (1972). Enzymes of carbohydrate and lipid metabolism in the placenta and liver of pregnant rats. Biochim. Biophys. Acta 279, 424–430.
PubMed |

Diamant, Y. Z. , Metzger, B. E. , Freinkel, N. , and Shafrir, E. (1982). Placental lipid and glycogen content in human and experimental diabetes mellitus. Am. J. Obstet. Gynecol. 144, 5–11.
PubMed |

Forman, B. M. , Tontoz, P. , Chen, J. , Brum, R. P. , Spiegelman, B. M. , and Evans, R. M. (1995). 15-Deoxy-delta 12,14 PGJ2 is a ligand for the adipocyte determination factor PPARgamma. Cell 83, 803–812.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gonzalez, E. , Jawerbaum, A. , Novaro, V. , Sinner, D. , and Gimeno, M. (1998). Nitric oxide modulates placental prostanoid production from late pregnant non-insulin-dependent diabetic rat. Prostaglandins Leukot. Essent. Fatty Acids 59, 299–304.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gonzalez, E. , Jawerbaum, A. , Sinner, D. , Pustovrh, C. , White, V. , Capobianco, E. , Xaus, C. , Peralta, C. , and Roselló-Catafau, J. (2002). Streptozotocin-pancreatic damage in the rat: modulatory effect of 15-deoxy delta 12,14 prostaglandin J2 on nitridergic and prostanoid pathway. Nitric Oxide 6, 214–220.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Green, L. C. , Wagner, D. A. , and Glogowski, J. (1982). Analysis of nitrate, nitrite and 15N-nitrate in biological fluids. Anal. Biochem. 126, 131–138.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Haggarty, P. (2002). Placental regulation of fatty acid delivery and its effect on fetal growth: a review. Placenta 23, S28–S38.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Herrera, E. (2002). Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development: a review. Placenta 23, S9–S19.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Holemans, K. , Aerts, L. , and Van Assche, F. A. (2003). Lifetime consequences of abnormal fetal pancreatic development. J. Physiol. 547, 11–20.
PubMed |

Ischiropoulos, H. (1998). Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch. Biochem. Biophys. 356, 1–11.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jawerbaum, A. , Gonzalez, E. T. , Novaro, V. , Faletti, A. , Sinner, D. , and Gimeno, M. A. F. (1998a). Increased prostaglandin E generation and enhanced nitric oxide synthase activity in the non-insulin-dependent diabetic embryo during organogenesis. Reprod. Fertil. Dev. 10, 191–196.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jawerbaum, A. , Novaro, V. , Franchi, A. M. , Gimeno, M. , and Gonzalez, E. (1998b). High glucose levels modulate eicosanoid production in uterine and placental tissue from non-insulin-dependent diabetic rats during late pregnancy. Prostaglandins Leukot. Essent. Fatty Acids 58, 389–393.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jawerbaum, A. , Sinner, D. , White, V. , Pustovrh, C. , Capobianco, E. , and Gonzalez, E. (2002). Modulation of nitric oxide concentration and lipid metabolism by 15deoxy Δ12,14 prostaglandin J2 in embryos from control and diabetic rats during early organogenesis. Reproduction 124, 625–631.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jawerbaum, A. , Capobianco, E. , Pustovrh, C. , White, V. , Baier, M. , Salzberg, S. , Pesaresi, M. , and Gonzalez, E. (2004). Influence of peroxisome proliferators-activated receptor gamma activation by its endogenous ligand 15-deoxy delta 12,14 prostaglandin J2 on nitric oxide production in term placental tissues from diabetic women. Mol. Hum. Reprod. 10, 671–676.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kitzmiller, J. L. , Cloherty, J. P. , Younger, M. D. , Tabatabaii, A. , Rothchild, S. B. , Sosenko, I. , Epstein, M. F. , Singh, S. , and Neff, R. K. (1978). Diabetic pregnancy and perinatal morbidity. Am. J. Obstet. Gynecol. 131, 560–580.
PubMed |

Kliewer, S. A. , and Wilson, T. M. (1998). The nuclear receptor PPARgamma: bigger than fat. Curr. Opin. Genet. Dev. 8, 576–581.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kliewer, S. A. , Lenhard, J. M. , Willson, T. M. , Patel, I. , Morris, D. C. , and Lehmann, J. M. (1995). A prostaglandin J2 metabolite binds peroxisome proliferator-activated gamma and promotes adipocyte differentiation. Cell 83, 813–819.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kossenjans, W. , Eis, A. , Sahay, R. , Brockman, D. , and Myatt, L. (2000). Role of peroxynitrite in altered fetal–placental vascular reactivity in diabetes or preeclampsia. Am. J. Physiol. Heart Circ. Physiol. 278, H1311–H1319.
PubMed |

Lehmann, J. M. , Moore, L. B. , Smith-Oliver, T. A. , Wilkison, W. O. , Wilson, T. M. , and Kliewer, S. A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 270, 12 953–12 956.
Crossref | GoogleScholarGoogle Scholar |

Lyall, F. , Gibson, J. L. , Greer, I. A. , Brockman, D. E. , Eis, A. L. W. , and Myatt, L. (1998). Increased nitrotyrosine in the diabetic placenta: evidence for oxidative stress. Diabetes Care 21, 1753–1758.
PubMed |

Maggi, L. B. , Sadeghi, H. , Weigand, C. , Scarim, A. L. , Heitmeir, M. R. , and Corbett, J. A. (2000). Anti-inflammatory actions of 15-deoxy-delta 12,14 prostaglandin J2 and troglitazone: evidence for heat shock-dependent and -independent inhibition of cytokine-induced inducible nitric oxide synthase expression. Diabetes 49, 346–355.
PubMed |

Maloff, B. L. , and Boyd, B. K. (1986). Physiologic and cellular insulin action in a glucose-intolerant model of type 2 (non-insulin-dependent) diabetes in rats. Diabetologia 29, 295–300.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mimura, K. , Umeda, F. , Hiramatsu, S. , Taniguchi, S. , Ono, Y. , Nakashima, N. , Kobayashi, K. , Masakado, M. , Sako, Y. , and Nawata, H. (1994). Effects of a new oral hypoglycaemic agent (CS-0.45) on metabolic abnormalities and insulin resistance in type 2 diabetes. Diabet. Med. 11, 685–691.
PubMed |

Oakes, N. D. , Thalen, P. G. , Jacinto, S. M. , and Ljung, B. (2001). Thiazolidinediones increase plasma–adipose tissue FFA exchange capacity and enhance insulin-mediated control of systemic FFA availability. Diabetes 50, 1158–1165.
PubMed |

Portha, B. , Picon, L. , and Rosselin, G. (1979). Chemical diabetes in the adult rat as the spontaneous evolution of neonatal diabetes. Diabetologia 17, 371–377.
PubMed |

Pustovrh, C. , Jawerbaum, A. , Sinner, D. , Pesaresi, M. , Baier, M. , Gimeno, M. , and Gonzalez, E. (2000). Membrane-type matrix metalloproteinase-9 activity in placental tissue from patients with pregestational and gestational diabetes mellitus Reprod. Fertil. Dev. 12, 269–275.
PubMed |

Ricote, M. , Li, A. C. , Willson, T. M. , Kelly, C. J. , and Glass, C. K. (1998). The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 391, 79–82.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rossi, A. , Kapahi, P. , Natoli, G. , Takahashi, T. , Chen, Y. , Karin, M. , and Santoro, M. G. (2000). Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103–108.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schaiff, W. T. , Carlson, M. , Smith, S. , Levy, R. , Nelson, D. M. , and Sadovsky, Y. (2000). Peroxisome proliferator-activated receptor-gamma modulates differentiation of human trophoblast in a ligand-specific manner. J. Clin. Endocrinol. Metab. 85, 3874–3881.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Shafrir, E. , and Barash, V. (1987). Placental function in maternal–fetal fat transport in diabetes. Biol. Neonate 51, 101–112.


Shimabukuro, M. , Koyama, K. , Lee, Y. , and Unger, R. H. (1997). Leptin- or troglitazone-induced lipopenia protects islets from interleukin 1β cytotoxicity. J. Clin. Invest. 7, 1750–1754.


Straus, D. S. , and Glass, C. K. (2001). Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med. Res. Rev. 21, 185–210.
PubMed |

Tarrade, A. , Schoojans, K. , Guibourdenche, J. , Bidart, J. M. , Vidaud, M. , Auwerx, J. , Rochette-Egly, C. , and Evain-Brion, D. (2001a). PPARγ/RXRα heterodimers are involved in human CG beta synthesis and human trophoblast invasion. Endocrinology 142, 4504–4514.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tarrade, A. , Schoojans, K. , Pavan, L. , Auwerx, J. , Rochette-Egly, C. , Evain-Brion, D. , and Fournier, T. (2001b). PPARγ/RXRα heterodimers control human trophoblast invasion. J. Clin. Endocrinol. Metab. 86, 5017–5024.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wahli, W. , Braissant, O. , and Desvergne, B. (1995). Peroxisome proliferator-activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more. Chem. Biol. 2, 261–266.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Waite, L. , Person, E. , Zhou, Y. , Kee-Hak, L. , Scanlan, T. , and Taylor, R. (2000). Placental peroxisome proliferators-activated receptor-gamma is up-regulated by pregnancy serum. J. Clin. Endocrinol. Metab. 85, 3808–3814.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wang, Q. , Fuhii, H. , and Knipp, G. T. (2002). Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta 23, 661–671.
Crossref | GoogleScholarGoogle Scholar | PubMed |

White, V. , Jawerbaum, A. , Sinner, D. , Pustovrh, C. , Capobianco, E. , and Gonzalez, E. (2002). Oxidative stress and altered prostanoid production in the placenta of non-insulin-dependent diabetic rats. Reprod. Fertil. Dev. 14, 117–123.
Crossref | GoogleScholarGoogle Scholar | PubMed |

White, V. , Gonzalez, E. , Capobianco, E. , Pustovrh, C. , Soñez, C. , Romanini, M. C. , and Jawerbaum, A. (2004). Modulatory effect of leptin on nitric oxide production and lipid metabolism in term placental tissues from control and diabetic rats. Reprod. Fertil. Dev. 16, 363–372.
Crossref | GoogleScholarGoogle Scholar | PubMed |