Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effect of the oxidative phosphorylation uncoupler 2,4-dinitrophenol on hypoxia-inducible factor-regulated gene expression in bovine blastocysts

A. J. Harvey A B , K. L. Kind A and J. G. Thompson A
+ Author Affiliations
- Author Affiliations

A Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, University of Adelaide, Queen Elizabeth Hospital, Woodville, SA 5011, Australia.

B To whom correspondence should be addressed. email: alexandra.harvey@adelaide.edu.au

Reproduction, Fertility and Development 16(7) 665-673 https://doi.org/10.1071/RD04027
Submitted: 26 March 2004  Accepted: 13 July 2004   Published: 21 September 2004

Abstract

In cattle embryos, development to the blastocyst stage is improved in the presence of 10 μm 2,4-dinitrophenol (DNP), an uncoupler of oxidative phosphorylation, coincident with an increase in glycolytic activity following embryonic genome activation. The present study examined redox-sensitive gene expression and embryo development in response to the addition of DNP post-compaction. 2,4-Dinitrophenol increased the expression of hypoxia-inducible factor 1α and 2α (HIF1α, HIF2α) mRNA. Although HIF1α protein remained undetectable in bovine blastocysts, HIF2α protein was localised within the nucleus of trophectoderm and inner cell mass (ICM) cells of blastocysts cultured in the presence or absence of DNP, with a slight increase in staining evident within the ICM in blastocysts cultured in the presence of DNP. However, the expression of GLUT1 and VEGF mRNA, genes known to be regulated by HIFs, was unaffected by the addition of DNP to the culture. Although the development of Grade 1 and 2 blastocysts was unaltered by the addition of DNP post compaction in the present study, a significant increase in the proportion of ICM cells was observed. Results indicate that 10 μm DNP improves the quality of bovine embryos, coincident with increased HIF2α protein localisation within ICM cells and increased HIFα mRNA levels. Therefore, the results demonstrate redox-regulated expression of HIF2.


References

Akeno, N. , Czyzyk-Krzeska, M. F. , Gross, T. S. , and Clemens, T. L. (2001). Hypoxia induces vascular endothelial growth factor gene transcription in human osteoblast-like cells through the hypoxia-inducible factor-2α. Endocrinology 142, 959–962.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Arnet, U. A. , McMillan, A. , Dinerman, J. L. , Ballermann, B. , and Lowenstein, C. J. (1996). Regulation of endothelial nitric-oxide synthase during hypoxia. J. Biol. Chem. 271, 15 069–15 073.
Crossref | GoogleScholarGoogle Scholar |

Edwards, L. J. , Batt, P. A. , Gandolfi, F. G. , and Gardner, D. K. (1997). Modifications made to culture medium by bovine oviduct epithelial cells: changes to carbohydrates stimulate bovine embryo development. Mol. Reprod. Dev. 46, 146–154.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gamaley, I. A. , and Klyubin, I. V. (1999). Roles of reactive oxygen species: signaling and regulation of cellular functions. Int. Rev. Cytol. 188, 203–255.
PubMed |

Gopichandran, N. , and Leese, H. J. (2003). Metabolic characterization of the bovine blastocyst, inner cell mass, trophectoderm and blastocoel fluid. Reproduction 126, 299–308.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Haddad, J. J. (2002). Oxygen homeostasis, thiol equilibrium and redox regulation of signalling transcription factors in the alveolar epithelium. Cell. Signal. 14, 799–810.
PubMed |

Harvey, A. J. , Kind, K. L. , and Thompson, J. G. (2002). REDOX regulation of early embryo development. Reproduction 123, 479–486.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Harvey, A. J. , Kind, K. L. , Pantaleon, M. , Armstrong, D. T. , and Thompson, J. G. (2004). Oxygen-regulated gene expression in bovine blastocysts. Biol. Reprod. 71,in press


Hewitson, L. C. , Martin, K. L. , and Leese, H. J. (1996). Effects of metabolic inhibitors on mouse preimplantation embryo development and the energy metabolism of isolated inner cell masses. Mol. Reprod. Dev. 43, 323–330.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hoffmann, A. , Gloe, T. , and Pohl, U. (2001). Hypoxia-induced upregulation of eNOS gene expression is redox-sensitive: a comparison between hypoxia and inhibitors of cell metabolism. J. Cell. Physiol. 188, 33–44.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Huang, L. E. , Arany, Z. , Livingston, D. M. , and Bunn, H. F. (1996). Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its α subunit. J. Biol. Chem. 271, 32 253–32 259.
Crossref | GoogleScholarGoogle Scholar |

Kamata, H. , and Hirata, H. (1999). Redox regulation of cellular signalling. Cell. Signal. 11, 1–14.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Khan, A. U. , and Wilson, T. (1995). Reactive oxygen species as cellular messengers. Chem. Biol. 2, 437–445.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Khayat, Z. A. , McCall, A. L. , and Klip, A. (1998). Unique mechanism of GLUT3 glucose transporter regulation by prolonged energy demand: increased protein half-life. Biochem. J. 333, 713–718.
PubMed |

Korshunov, S. S. , Skulachev, V. P. , and Starkov, A. A. (1997). High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416, 15–18.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lander, H. M. (1997). An essential role for free radicals and derived species in signal transduction. FASEB J. 11, 118–124.
PubMed |

Lando, D. , Pongratz, I. , Poellinger, L. , and Whitelaw, M. L. (2000). A redox mechanism controls differential DNA binding activities of hypoxia-inducible factor (HIF) 1α and the HIF-like factor. J. Biol. Chem. 275, 4618–4627.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Le Cras, T. D. , Tyler, R. C. , Horan, M. P. , Morris, K. G. , Tuder, R. M. , McMurtry, I. F. , Johns, R. A. , and Abman, S. H. (1998). Effects of chronic hypoxia and altered hemodynamics on endothelial nitric oxide synthase expression in the adult rat lung. J. Clin. Invest. 101, 795–801.
PubMed |

Leese, H. J. (1991). Metabolism of the preimplantation mammalian embryo. Oxf. Rev. Reprod. Biol. 13, 35–72.
PubMed |

Leese, H. J. (1995). Metabolic control during preimplantation mammalian development. Hum. Reprod. Update 1, 63–72.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Leverve, X. , Sibille, B. , Devin, A. , Piquet, M. A. , Espie, P. , and Rigoulet, M. (1998). Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences. Mol. Cell. Biochem. 184, 53–65.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Máchaty, Z. , Thompson, J. G. , Abeydeera, L. R. , Day, B. N. , and Prather, R. S. (2001). Inhibitors of mitochondrial ATP production at the time of compaction improve the development of in vitro produced porcine embryos. Mol. Reprod. Dev. 58, 39–44.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Mertens, S. , Noll, T. , Spahr, R. , Krutzfeldt, A. , and Piper, H. M. (1990). Energetic response of coronary endothelial cells to hypoxia. Am. J. Physiol. 258, H689–H694.
PubMed |

Meyer, M. , Pahl, H. L. , and Baeuerle, P. A. (1994). Regulation of the transcription factors NF-κB and AP-1 by redox changes. Chem. Biol. Interact. 91, 91–100.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nakamura, H. , Nakamura, K. , and Yodoi, J. (1997). Redox regulation of cellular activation. Annu. Rev. Immunol. 15, 351–369.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Obi-Tabot, T. E. , Hanrahan, L. M. , Cachecho, R. , Beer, E. R. , Hokins, S. R. , Chan, J. C. , Shapiro, J. M. , and LaMorte, W. W. (1993). Changes in hepatocyte NADH fluorescence during prolonged hypoxia. J. Surg. Res. 55, 575–580.
Crossref | GoogleScholarGoogle Scholar | PubMed |

O’Fallon, J. V. , and Wright, R. W. (1986). Quantitative determination of the pentose phosphate pathway in preimplantation mouse embryos. Biol. Reprod. 34, 58–64.
PubMed |

Okuda, M. , Lee, H. C. , Kumar, C. , and Chance, B. (1992). Comparison of the effect of a mitochondrial uncoupler, 2,4-dinitrophenol, and adrenaline on oxygen radical production in the isolated perfused rat liver. Acta Physiol. Scand. 145, 159–168.
PubMed |

Page, E. L. , Robitaille, G. A. , Pouyssegur, J. , and Richard, D. E. (2002). Induction of hypoxia-inducible factor-1α by transcriptional and translational mechanisms. J. Biol. Chem. 277, 48 403–48 409.
Crossref | GoogleScholarGoogle Scholar |

Rex, A. , Pfeifer, L. , Fink, F. , and Fink, H. (1999). Cortical NADH during pharmacological manipulations of the respiratory chain and spreading depression in vivo. J. Neurosci. Res. 57, 359–370.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rieger, D. , Loskutoff, N. M. , and Betteridge, K. J. (1992). Development related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil. Dev. 4, 547–557.
PubMed |

Rieger, D. , McGowan, L. T. , Cox, S. F. , Pugh, P. A. , and Thompson, J. G. (2002). Effect of 2,4-dinitrophenol on the energy metabolism of cattle embryos produced by in vitro fertilization and culture. Reprod. Fertil. Dev. 14, 339–343.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sandau, K. B. , Zhou, J. , Kietzmann, T. , and Brune, B. (2001). Regulation of the hypoxia-inducible factor 1α by the inflammatory mediators nitric oxide and tumor necrosis factor-α in contrast to desferroxamine and phenylarsine oxide. J. Biol. Chem. 276, 39 805–39 811.
Crossref | GoogleScholarGoogle Scholar |

Semenza, G. L. (1998). Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr. Opin. Genet. Dev. 8, 588–594.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Semenza, G. L. (2001). HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13, 167–171.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Semenza, G. (2002). Signal transduction to hypoxia-inducible factor 1. Biochem. Pharmacol. 64, 993–998.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Semenza, G. L. , Roth, P. H. , Fang, H.-M. , and Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23 757–23 763.


Sen, C. K. , and Packer, L. (1996). Antioxidant and redox regulation of gene transcription. FASEB J. 10, 709–720.
PubMed |

Shaul, P. W. , North, A. J. , Brannon, T. S. , Ujiie, K. , Wells, L. B. , Nisen, P. A. , Lowenstein, C. J. , Snyder, S. H. , and Star, R. A. (1995). Prolonged in vivo hypoxia enhances nitric oxide synthase type I and type III gene expression in adult rat lung. Am. J. Respir. Cell Mol. Biol. 13, 167–174.
PubMed |

Sibille, B. , Keriel, C. , Fontaine, E. , Catelloni, F. , Rigoulet, M. , and Leverve, X. M. (1995). Octanoate affects 2,4-dinitrophenol uncoupling in intact isolated rat hepatocytes. Eur. J. Biochem. 231, 498–502.
PubMed |

Sjöblom, C. , Wikland, M. , and Robertson, S. A. (1999). Granulocyte–macrophage colony-stimulating factor promotes human blastocyst development in vitro. Hum. Reprod. 14, 3069–3076.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stingfellow, D. A., and  Seidel, S. M. (1998). ‘Manual of the International Embryo Transfer Society.’ (IETS: Savoy, IL, USA.)

Sun, Y. , and Oberley, L. W. (1996). Redox regulation of transcriptional activators. Free Radic. Biol. Med. 21, 335–348.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Szibor, M. , Richter, C. , and Ghafourifar, P. (2001). Redox control of mitochondrial functions. Antioxid. Redox Signal. 3, 515–523.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thannickal, V. J. , and Fanburg, B. L. (2000). Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L1005–L1028.
PubMed |

Thompson, J. G. , Bell, A. C. S. , Pugh, P. A. , and Tervit, H. R. (1993). Metabolism of pyruvate by pre-elongation sheep embryos and effect of pyruvate and lactate concentration during culture in vitro. Reprod. Fertil. Dev. 5, 417–423.
PubMed |

Thompson, J. G. , Partridge, R. J. , Houghton, F. D. , Cox, C. I. , and Leese, H. J. (1996). Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J. Reprod. Fertil. 106, 299–306.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thompson, J. G. , McNaughton, C. , Gasparrini, B. , McGowan, L. T. , and Tervit, H. R. (2000). Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J. Reprod. Fertil. 118, 47–55.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Voet, D., and  Voet, J. G. (1990). ‘Biochemistry.’ (John Wiley & Sons: New York, USA.)

Wales, R. G. , and Waugh, E. E. (1993). Oxidation of [U-14]acetate by the sheep conceptus between days 13 and 19 of pregnancy. Reprod. Fertil. Dev. 5, 201–208.
PubMed |

Wales, R. G. , Cuneo, C. L. , and Waugh, E. E. (1989). Incorporation of glucose by the sheep conceptus between days 13 and 19 of pregnancy. Reprod. Fertil. Dev. 1, 137–145.
PubMed |

Wang, G. L. , Jiang, B.-H. , Rue, E. , and Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514.
PubMed |

Wiesener, M. S. , Turley, H. , William, A. C. , Eckardt, K.-U. , and Talks, K. L. , et al. (1998). Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood 92, 2260–2268.
PubMed |

Wrenzycki, C. , Herrmann, D. , Carnwath, J. W. , and Niemann, H. (1998). Expression of RNA from developmentally important genes in preimplantation bovine embryos produced in TCM supplemented with BSA. J. Reprod. Fertil. 112, 387–398.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wrenzycki, C. , Herrmann, D. , Keskintepe, L. , Martins, A. , Sirisathien, S. , Brackett, B. , and Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum. Reprod. 16, 893–901.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wrenzycki, C. , Herrmann, D. , and Niemann, H. (2003). Timing of blastocyst expansion affects spatial messenger RNA expression patterns of genes in bovine blastocysts produced in vitro. Biol. Reprod. 68, 2073–2080.
PubMed |

Zhong, H. , and Simons, J. W. (1999). Direct comparison of GAPDH, β-actin, cyclophilin and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem. Biophys. Res. Commun. 259, 523–526.
Crossref | GoogleScholarGoogle Scholar | PubMed |