Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Serial analysis of gene expression (SAGE) during porcine embryo development

Le Ann Blomberg A B and Kurt A. Zuelke A
+ Author Affiliations
- Author Affiliations

A Biotechnology and Germplasm Laboratory, Animal and Natural Resources Institute, USDA Agricultural Research Service, Beltsville, MD 20705, USA.

B To whom correspondence should be addressed. email: lblomberg@anri.barc.usda.gov

Reproduction, Fertility and Development 16(2) 87-92 https://doi.org/10.1071/RD03081
Submitted: 1 August 2003  Accepted: 1 October 2003   Published: 1 October 2003

Abstract

Functional genomics provides a powerful means for delving into the molecular mechanisms involved in pre-implantation development of porcine embryos. High rates of embryonic mortality (30%), following either natural mating or artificial insemination, emphasise the need to improve the efficiency of reproduction in the pig. The poor success rate of live offspring from in vitro-manipulated pig embryos also hampers efforts to generate transgenic animals for biotechnology applications. Previous analysis of differential gene expression has demonstrated stage-specific gene expression for in vivo-derived embryos and altered gene expression for in vitro-derived embryos. However, the methods used to date examine relatively few genes simultaneously and, thus, provide an incomplete glimpse of the physiological role of these genes during embryogenesis. The present review will focus on two aspects of applying functional genomics research strategies for analysing the expression of genes during elongation of pig embryos between gestational day (D) 11 and D12. First, we compare and contrast current methodologies that are being used for gene discovery and expression analysis during pig embryo development. Second, we establish a paradigm for applying serial analysis of gene expression as a functional genomics tool to obtain preliminary information essential for discovering the physiological mechanisms by which distinct embryonic phenotypes are derived.


References

Adams, M. D. , Kelley, J. M. , Gocayne, J. D. , Dubnick, M. , and Polymeropoulos, M. H. , et al. (1991). Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656.
PubMed |

Anderson, L. L. (1978). Growth, protein content and distribution of early pig embryos. Anat. Rec. 190, 143–153.
PubMed |

Anisimov, S. V. , Tarasov, K. V. , Tweedie, D. , Stern, M. D. , Wobus, A. M. , and Boheler, K. R. (2002). SAGE identification of gene transcripts with profiles unique to pluripotent mouse R1 embryonic stem cells. Genomics 79, 169–176.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Audic, S. , and Claverie, J. M. (1997). The significance of digital gene expression profiles. Genome Res. 7, 986–995.
PubMed |

Bose, H. S. , Sugawara, T. , Strauss, J. F. , and Miller, W. L. (1996). The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. International Congenital Lipoid Adrenal Hyperplasia Consortium. N. Engl. J. Med. 335, 1870–1878.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Clark, B. J. , Wells, J. , King, S. R. , and Stocco, D. M. (1994). The purification, cloning, and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse leydig tumor cells. J. Biol. Chem. 269, 28314–28322.
PubMed |

Diatchenko, L. , Lau, Y. F. , Campbell, A. P. , Chenchik, A. , and Moqadam, F. , et al. (1996). Suppression subtractive hybridization: a method of generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl Acad. Sci. USA 93, 6025–6030.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dobrinsky, J. R. (1997). Cryopreservation of pig embryos. J. Reprod. Fertil. Suppl. 52, 301–312.
PubMed |

Dobrinsky, J. R. , Pursel, V. G. , Long, C. R. , and Johnson, L. A. (2000). Birth of piglets after transfer of embryos cryopreserved by cytoskeletal stabilization and vitrification. Biol. Reprod. 62, 564–570.
PubMed |

Fischer, H. E. , Bazer, F. W. , and Fields, M. J. (1985). Steroid metabolism by endometrial and conceptus tissues during early pregnancy and pseudopregnancy in gilts. J. Reprod. Fertil. 75, 69–78.
PubMed |

Flint, A. P. , Burton, R. D. , Gadsby, J. E. , Saunders, P. T. , and Heap, R. B. (1978). Blastocyst oestrogen synthesis and the maternal recognition of pregnancy. Ciba Found. Symp. 64, 209–238.
PubMed |

Geisert, R. D. , Renegar, R. H. , Thatcher, W. W. , Roberts, R. M. , and Bazer, F. W. (1982a). Establishment of pregnancy in the pig: I. Interrelationships between preimplantation development of the pig blastocyst and uterine endometrial secretions. Biol. Reprod. 27, 925–939.
PubMed |

Geisert, R. D. , Brookbank, J. W. , Roberts, R. M. , and Bazer, F. W. (1982b). Establishment of pregnancy in the pig. II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biol. Reprod. 27, 941–955.
PubMed |

Geisert, R. D. , Zavy, M. T. , Wettemann, R. P. , and Biggers, B. G. (1987). Length of pseudopregnancy and pattern of uterine protein release as influenced by time and duration of oestrogen administration in the pig. J. Reprod. Fertil. 79, 163–172.
PubMed |

Green, M. L. , Simmen, R. C. , and Simmen, F. A. (1995). Developmental regulation of steroidogenic enzyme gene expression in the periimplantation porcine conceptus: a paracrine role for insulin-like growth factor-I. Endocrinology 136, 3961–3970.
PubMed |

Hogenesch, J. B. , Ching, K. A. , Batalov, S. , Su, A. I. , Walker, J. R. , Zhou, Y. , Kay, S. A. , Schultz, P. G. , and Cooke, M. P. (2001). A comparison of the Celera and Ensembl predicted gene sets reveals little overlap in novel genes. Cell 106, 413–425.
PubMed |

Jarrel, V. L. , Day, B. N. , and Prather, R. S. (1991). The transition from maternal to zygotic control occurs during the 4-cell stage in domestic pig, Sus scrofa: quantitative and qualitative aspects of protein synthesis. Biol. Reprod. 44, 62–68.
PubMed |

Kapranov, P. , Cawley, S. E. , Drenkow, J. , Bekiranov, S. , Strausberg, R. L. , Fodor, S. P. , and Gingeras, T. R. (2002). Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–929.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ko, M. S. (2001). Embryogenomics: developmental biology meets genomics. Trends Biotechnol. 19, 511–518.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kowalski, A. A. , Graddy, L. G. , Vale-Cruz, D. S. , Choi, I. , Katzenellenbogen, B. S. , Simmen, F. A. , and Simmen, R. C. (2002). Molecular cloning of porcine estrogen receptor-beta complentary DNAs and developmental expression in periimplantation embryos. Biol. Reprod. 66, 760–769.
PubMed |

Lander, E. S. , Linton, L. M. , Birren, B. , Nusbaum, C. , and Zody, M. C. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liang, P. , and Pardee, A. B. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.
PubMed |

Long, E. L. , Sonstegard, T. S. , Long, J. A. , Van Tassell, C. P. , and Zuelke, K. A. (2003). Serial analysis of gene expression in turkey sperm storage tubules in the presence and absence of resident sperm. Biol. Reprod. 69, 469–474.
PubMed |

Mullis, K. , Faloona, F. , Scharf, S. , Saiki, R. , Horn, G. , and Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51, 263–273.
PubMed |

Neilson, L. , Andalibi, A. , Kang, D. , Coutifaris, C. , Strauss, J. F. , Stanton, J. A. , and Green, D. P. (2000). Molecular phenotype of the human oocyte by PCR-SAGE. Genomics 63, 13–24.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Niemann, H. , and Elsaesser, F. (1986). Evidence for estrogen-dependent blastocyst formation in the pig. Biol. Reprod. 35, 10–16.
PubMed |

Patten, B. M. (1948). ‘Embryology of the Pig’, 3rd edn. (McGraw-Hill: New York.)

Pope, W. F. , and First, N. L. (1985). Factors affecting survival of pig embryos. Theriogenology 23, 91–105.
Crossref | GoogleScholarGoogle Scholar |

Quackenbush, J. , Cho, J. , Lee, D. , Liang, F. , Holt, I. , Karamycheva, S. , Parvizi, B. , Pertea, G. , Sultana, R. , and White, J. (2001). The TIGR gene indices: analysis of gene transcript sequences in a high sampled eukaryotic species. Nucleic Acids Res. 29, 159–164.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reima, I. , Lehtonen, E. , Virtanen, I. , and Flechon, J. E. (1993). The cytoskeleton and associated protein during cleavage, compaction and blastocyst differentiation in the pig. Differentiation 54, 35–45.
PubMed |

Ross, J. W. , Ashworth, M. D. , Hurst, A. G. , Malayer, J. R. , and Geisert, R. D. (2003). Analysis and characterization of differential gene expression during rapid trophoblastic elongation in the pig using suppression subtractive hybridization. Reprod. Biol. Endocrinol. 1, 23.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Smith, T. P. , Fahrenkrug, S. C. , Rohrer, G. A. , Simmen, F. A. , Rexroad, C. E. , and Keele, J. W. (2001). Mapping of expressed sequence tags from a porcine early embryonic cDNA library. Anim. Genet. 32, 66–72.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stroband, H. W. , and Van der Lende, T. (1990). Embryonic and uterine development during early pregnancy in pigs. J. Reprod. Fertil. , 261–277. . 40
PubMed |

Telford, N. A. , Watson, A. J. , and Schultz, G. A. (1990). Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol. Reprod. Dev. 26, 90–100.
PubMed |

Tomanek, M. , Kopecny, V. , and Kanka, J. (1989). Genome reactivation in developing early pig embryos: an ultrastructural and autoradiographic analysis. Anat. Embryol. 180, 309–316.
PubMed |

Velculescu, V. E. , Zhang, L. , Vogelstein, B. , and Kinzler, K. W. (1995). Serial analysis of gene expression. Science 270, 484–487.
PubMed |

Velculescu, V. E. , Zhang, L. , Zhou, W. , Vogelstein, J. , Basrai, M. A. , Bassett, D. E. , Hieter, P. , Vogelstein, B. , and Kinzler, K. W. (1997). Characterization of the yeast transcriptome. Cell 88, 243–251.
PubMed |

Venter, J. C. , Adams, M. D. , Myers, E. W. , Li, P. W. , and Mural, R. J. , et al. (2001). The sequence of the human genome. Science 291, 1304–1351.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Waterston, R. H. , Lindblad-Toh, K. , Birney, E. , Rogers, J. , and Abril, J. F. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilson, M. E. , Sonstegard, T. S. , Smith, T. P. L. , Fahrenkrug, S. C. , and Ford, S. P. (2000). Differential gene expression during elongation in the preimplantation pig embryo. Genesis 26, 9–14.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilson, M. E. , Fahrenkrug, S. C. , Smith, T. P. , Rohrer, G. A. , and Ford, S. P. (2002). Differential expression of cyclooxygenase-2 around the time of elongation in the pig conceptus. Anim. Reprod. Sci. 71, 229–237.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yelich, J. V. , Pomp, D. , and Geisert, R. D. (1997a). Ontogeny of elongation and gene expression in the early developing porcine conceptus. Biol. Reprod. 57, 1256–1265.
PubMed |

Yelich, J. V. , Pomp, D. , and Geisert, R. D. (1997b). Detection of transcripts for retinoic acid receptors, retinol-binding protein, and transforming growth factors during rapid trophoblastic elongation in the porcine conceptus. Biol. Reprod. 57, 286–294.
PubMed |

Yoshie, O. , Imai, T. , and Nomiyama, H. (1997). Novel lymphocyte-specific CC chemokines and their receptors. J. Leukoc. Biol. 62, 634–644.
PubMed |

Zhang, L. , Zhou, W. , Velculescu, V. E. , Kern, S. E. , Hruban, R. H. , Hamilton, S. R. , Vogelstein, B. , and Kinzler, K. W. (1997). Gene expression profiles in normal and cancer cells. Science 276, 1268–1272.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zuelke, K. A. , Blomberg, L. A. , Long, E. L. , and Sonstegard, T. S. (2003). Serial analysis of gene expression (SAGE) comparisons between day 11 and day 12 porcine embryos. Theriogenology 59, 435.