Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Developments in in vitro technologies for swine embryo production

Matthew B. Wheeler A B D , Sherrie G. Clark A and David J. Beebe C
+ Author Affiliations
- Author Affiliations

A Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

B Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

C Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

D To whom correspondence should be addressed. email: mbwheele@uiuc.edu

Reproduction, Fertility and Development 16(2) 15-25 https://doi.org/10.1071/RD03074
Submitted: 1 August 2003  Accepted: 1 October 2003   Published: 2 January 2004

Abstract

Several modifications have been made to in vitro production (IVP) systems to allow more efficient production of viable porcine embryos. Although in vitro production of pig embryos has been studied for over 30 years, the overall blastocyst production rate remains low. The low blastocyst rate is due to several factors, including polyspermic oocyte penetration, low rate of male pronucleus formation and less than optimal in vitro culture systems. These conditions are all inherent problems in porcine IVP and many of the mechanisms involved remain unknown. Considerable research has examined culture medium and the techniques used during the various stages of in vitro production. However, changes to the physical culture system used during IVF have remained unchanged until recently. The present paper will summarise selected developments in fertilisation and embryo culture media composition and focus on the development of modified equipment to improve the conditions used during the IVP of porcine oocytes and embryos.

Extra keywords: in vitro production, microchannel, microfluidics, porcine.


Acknowledgments

The authors thank Eric Walters and Samantha Malusky for critical review of the manuscript. Some of the work presented here was supported by the Critical Research Initiatives at the University of Illinois, the Council for Food and Agricultural Research (C-FAR) and US Department of Agriculture Regional Research Project W-171.


References

Abeydeera, L. R. (2002). In vitro production of embryos in swine. Theriogenology 57, 257–273.
Crossref | GoogleScholarGoogle Scholar |

Abeydeera, L. R. , and Day, B. N. (1997a). In vitro fertilization of pig oocytes in a modified Tris-buffered medium: effect of BSA, caffeine and calcium. Theriogenology 48, 537–544.
Crossref | GoogleScholarGoogle Scholar |

Abeydeera, L. R. , and Day, B. N. (1997b). Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified Tris-buffered medium with frozen–thawed ejaculated spermatozoa. Biol. Reprod. 57, 729–734.
PubMed |

Archibong, A. E. , Petters, R. M. , and Johnson, B. M. (1989). Development of porcine embryos from one- and two-cell stages to blastocysts in culture medium supplemented with porcine oviductal fluid. Biol. Reprod. 41, 1076–1083.
PubMed |

Beebe, D. , Wheeler, M. , Zeringue, H. , Walters, E. , and Raty, S. (2002a). Microfluidic technology for assisted reproduction. Theriogenology 57, 125–135.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Beebe, D. J. , Mensing, G. A. , and Walker, G. M. (2002b). Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Boquest, A. C. , Abeydeera, L. R. , Wang, W. H. , and Day, B. N. (1999). Effect of adding reduced glutathione during insemination on the development of porcine embryos in vitro.  Theriogenology 51, 1311–1319.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Brinster, R. L. (2002). Germline stem cell transplantation and transgenesis. Science 296, 2174–2176.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Buhi, W. C. (2002). Characterization and biological roles of oviduct-specific estrogen-dependent glycoprotein. Reproduction 123, 355–362.
PubMed |

Canseco, R. S. , Sparks, A. E. T. , Pearson, R. E. , and Gwazdauskas, F. C. (1992). Embryo density and medium volume effects on early murine development. J. Assist. Reprod. Genet. 9, 454–457.
PubMed |

Chan, N. G. , Lyman, J. T. , Choi, S. J. , Zeringue, H. C. , Glasgow, I. K. , Beebe, D. J. , and Wheeler, M. B. (1999). Development of an embryo transport and analysis system: material biocompatibility. Theriogenology 51, 234.


Chan, N. G. , Raty, S. , Zeringue, H. C. , Beebe, D. J. , and Wheeler, M. B. (2001). Development of microfabricated devices for embryo production: embryo biocompatibility. Theriogenology 55, 332.


Cheng, W. T. K. , Moor, R. M. , and Polge, C. (1986). In vitro fertilization of pig and sheep oocytes matured in vivo and in vitro.  Theriogenology 25, 146.
Crossref | GoogleScholarGoogle Scholar |

Cho, B. S. , Schuster, T. G. , Zhu, X. , Chang, D. , Smith, G. D. , and Takayama, S. (2003). Passively driven integrated microfluidic system for separation of motile sperm. Anal. Chem. 75, 1671–1675.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Choi, Y. H. , Saito, S. , and Oguri, N. (1995). In vitro development of porcine oocytes fertilized in vitro with spermatozoa preincubated in two different media. Theriogenology 44, 287–294.
Crossref | GoogleScholarGoogle Scholar |

Clark, S. C. (2003). ‘In vitro Maturation, Fertilization and Embryo Culture of Porcine Gametes in a Microfluidic Environment.’ PhD Thesis (University of Illinois at Urbana-Champaign: Urbana)

Clark, S. C. , Davis, J. , Beebe, D. J. , and Wheeler, M. B. (2001). Biocompatibility of porcine sperm cells in polydimethylsiloxane (PDMS). Theriogenology 55, 421.


Clark, S. G. , Walters, E. M. , Beebe, D. J. , and Wheeler, M. B. (2002). In vitro fertilization of porcine oocytes in polydimethylsiloxane (PDMS)–glass microchannels. Biol. Reprod. 66, 528.Suppl. 1


Clark, S. G. , Walters, E. M. , Beebe, D. J. , and Wheeler, M. B. (2003). A novel integrated in vitro maturation and in vitro fertilization system for swine. Theriogenology 59, 441.


Clark, S. G. , Walters, E. M. , Beebe, D. J. , and Wheeler, M. B. (2004). In vitro fertilization in microfluidic channels enhances monospermic penetration of swine oocytes. Reprod. Fertil. Dev. 16, 251.(Abstract)


Coy, P. , Martinez, E. , Ruiz, S. , Vazquez, J. M. , Roca, J. , and Gadea, J. (1993a). Environment and medium volume influence in vitro fertilization of pig oocytes. Zygote 1, 209–213.
PubMed |

Coy, P. , Martinez, E. , Ruiz, S. , Vazquez, J. M. , Roca, J. , and Matas, C. (1993b). Sperm concentration influences fertilization and male pronuclear formation in vitro in pigs. Theriogenology 40, 539–546.
Crossref | GoogleScholarGoogle Scholar |

Coy, P. , Martinez, E. , Ruiz, S. , Vazquez, J. M. , Roca, J. , Matas, C. , and Pellicer, M. T. (1993c). In vitro fertilization of pig oocytes after different coincubation intervals. Theriogenology 39, 1201–1208.
Crossref | GoogleScholarGoogle Scholar |

Coy, P. , Ruiz, S. , Romar, R. , Campos, I. , and Gadea, J. (1999). Maturation, fertilization and complete development of porcine oocytes matured under different systems. Theriogenology 51, 799–812.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Coy, P. , Gadea, J. , Romar, R. , Matas, C. , and Garcia, E. (2002). Effect of in vitro fertilization medium on the acrosome reaction, cortical reaction, zona pellucida hardening and in vitro development in pigs. Reproduction 124, 279–288.
PubMed |

Davis, J. A., Raty, S., Eddington, D. T., Glasgow, I. K., Zeringue, H. C., Wheeler, M. B., and  Beebe, D. J. (2000). Development of microfluidic channels for the culture of mammalian embryos. In ‘Proceedings of the 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology’. (Eds. A Dittmar and D Beebe)  pp. 307–10. (IEEE Inc.: New York.)

Day, B. N. (2000). Reproductive biotechnologies: current status in porcine reproduction. Anim. Reprod. Sci. 60–61, 161–172.
Crossref | GoogleScholarGoogle Scholar |

Dubuc, A. , and Sirard, M. A. (1995). Effect of coculturing spermatozoa with oviductal cells on the incidence of polyspermy in pig in vitro fertilization. Mol. Reprod. Dev. 41, 360–367.
PubMed |

Dubuc, A. , and Sirard, M. A. (1996). Effect of steroids and oviductal cells, from the different parts of the oviduct, on the incidence of monospermy in porcine in vitro fertilization. Theriogenology 46, 449–458.
Crossref | GoogleScholarGoogle Scholar |

Eberhardt, D. M. , Henricks, D. M. , Dickey, J. F. , and Diehl, J. R. (1994). Oviductal fluid and growth factors failed to enhance development of porcine embryos. Theriogenology 41, 1163–1172.


Ebert, K. M. , and Papaioannou, V. E. (1989). In vivo culture of embryos in the immature mouse oviduct. Theriogenology 31, 299–308.
Crossref | GoogleScholarGoogle Scholar |

Fukui, Y. , Lee, E. S. , and Araki, N. (1996). Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos. J. Anim. Sci. 74, 2752–2758.
PubMed |

Funahashi, H. , and Day, B. N. (1993). Effects of follicular fluid at fertilization in vitro on sperm penetration in pig oocytes. J. Reprod. Fertil. 99, 97–103.
PubMed |

Funahashi, H. , and Day, B. N. (1997). Advances in in vitro production of pig embryos. J. Reprod. Fertil. Suppl. 52, 271–283.
PubMed |

Funahashi, H. , and Nagai, T. (2000). Sperm selection by a climbing-over-a-wall IVF method reduces the incidence of polyspermic penetration of porcine oocytes. J. Reprod. Dev. 46, 319–324.
Crossref | GoogleScholarGoogle Scholar |

Funahashi, H. , Fujiwara, T. , and Nagai, T. (2000). Modulation of the function of boar spermatozoa via adenosine and fertilization promoting peptide receptors reduce the incidence of polyspermic penetration into porcine oocytes. Biol. Reprod. 63, 1157–1163.
PubMed |

Gardner, D. K. , and Lane, M. (1997). Culture and selection of viable blastocysts: a feasible proposition for human IVF. Hum. Reprod. Update 3, 367–382.
PubMed |

Gardner, D. K. , Lane, M. , Spitzer, A. , and Batt, P. A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390–400.
PubMed |

Gil, M. A. , Abeyderra, L. R. , Day, B. N. , Vazquez, J. M. , Roca, J. , and Martinez, E. A. (2003). Effect of the volume of medium and number of oocytes during in vitro fertilization on embryo development in pigs. Theriogenology 60, 767–776.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Glasgow, I. K., Zeringue, H. C., Beebe, D. J., Choi, S. J., Lyman, J. and  Wheeler, M. B. (1998). Individual embryo transport on a chip for a total analysis system. In ‘Third International Symposium on Micro-Total Analysis System.’ (Eds. D J. Harrison and A van de Berg)  pp. 199–202. (Kluwer Academic Publishers: Boston, MA.)

Han, Y.-M. , Abeydeera, L. R. , Kim, J.-H. , Moon, H.-B. , Cabot, R. A. , Day, B. N. , and Prather, R. S. (1999a). Growth retardation of inner cell mass cells in polyspermic porcine embryos produced in vitro.  Biol. Reprod. 60, 1110–1113.
PubMed |

Han, Y.-M. , Wang, W.-H. , Abeydeera, L. R. , Petersen, A. L. , Kim, J.-H. , Murphy, C. , Day, B. N. , and Prather, R. S. (1999b). Pronuclear location before the first cell division determines ploidy of polyspermic pig embryos. Biol. Reprod. 61, 1340–1346.
PubMed |

Hasler, J. F. , Lane, M. , Musser, J. , Hasler, M. J. , and Gardner, D. K. (2000). Culture of bovine embryos in the sequential media G1.2/G2.2. Theriogenology 53, 295.


Hester, P. N. , Roseman, H. M. , Clark, S. G. , Walters, E. M. , Beebe, D. J. , and Wheeler, M. B. (2002). Enhanced cleavage rates following in vitro maturation of pig oocytes within polydimethylsiloxane-borosilicate microchannels. Theriogenology 57, 723.


Hickman, D. L. , Beebe, D. J. , Rodriguez-Zas, S. L. , and Wheeler, M. B. (2002). Comparison of static and dynamic medium environments for culturing of pre-implantation mouse embryos. Comp. Med. 52, 122–126.
PubMed |

Huguet, E. , and Esponda, P. (2000). Generation of genetically modified mice by spermatozoa transfection in vivo: preliminary results. Mol. Reprod. Dev. 56, 243–247.
Crossref | GoogleScholarGoogle Scholar |

Hunter, R. H. F. (1990). Fertilization of pig eggs in vivo and in vitro.  J. Reprod. Fertil. Suppl. 40, 211–226.
PubMed |

Hunter, R. H. F. (1991). Oviduct function in pigs, with particular reference to the pathological condition of polyspermy. Mol. Reprod. Dev. 29, 385–391.
PubMed |

Kaidson, A., Colenbrander, B., Verheijden, J. H. M., and  Bevers, M. M. (2001). Polyspermia in the pig is dependent on both IVF medium and sperm dose during fertilization in vitro. In ‘Proceedings of the Sixth International Conference on Pig Reproduction’. (University of Missouri: Columbia, MO.)

Kashiwazaki, N. , Kikuchi, K. , Suzuki, K. , Noguchi, J. , Nagai, T. , Kaneko, H. , and Shino, M. (2001). Development in vivo and in vitro to blastocysts of porcine oocytes matured and fertilized in vitro.  J. Reprod. Dev. 47, 303–310.
Crossref | GoogleScholarGoogle Scholar |

Keefer, C. L. , Stice, S. L. , Paprocki, A. M. , and Golueke, P. (1994). In vitro culture of bovine IVM-IVF embryos: cooperative interaction among embryos and the role of growth factors. Theriogenology 41, 1323–1331.
Crossref | GoogleScholarGoogle Scholar |

Khurana, N. K. , and Niemann, H. (2000). Energy metabolism in preimplantation bovine embryos derived in vitro and in vivo.  Biol. Reprod. 62, 847–856.
PubMed |

Kikuchi, K. , Kashiwazaki, N. , Noguchi, J. , Shimada, A. , Takahashi, R. , Hirabayashi, M. , Shino, M. , Ueda, M. , and Kaneko, H. (1999). Developmental competence, after transfer to recipients, of porcine oocytes matured, fertilized, and cultured in vitro.  Biol. Reprod. 60, 336–340.
PubMed |

Kouba, A. J. , Abeydeera, L. R. , Alvarez, I. M. , Day, B. N. , and Buhi, W. C. (2000). Effects of the porcine oviduct-specific glycoprotein on fertilization, polyspermy, and embryonic development in vitro.  Biol. Reprod. 63, 242–250.
PubMed |

Krisher, R. L. , Petters, R. M. , Johnson, B. H. , Bavister, B. D. , and Archibong, A. E. (1989a). Development of porcine embryos form the one-cell stage to blastocyst in mouse oviducts maintained in organ culture. J. Exp. Zool. 249, 235–239.
PubMed |

Krisher, R. L. , Petters, R. M. , and Johnson, B. H. (1989b). Effect of oviductal condition on the development of one-cell porcine embryos in mouse or rat oviducts maintained in organ culture. Theriogenology 32, 885–892.
Crossref | GoogleScholarGoogle Scholar |

Krisher, R. L. , Lane, M. , and Bavister, B. (1999). Developmental competence and metabolism of bovine embryos cultured in semi-defined and defined culture media. Biol. Reprod. 60, 1345–1352.
PubMed |

Kubisch, H. M. , Larson, M. A. , Funahashi, H. , Day, B. N. , and Roberts, R. M. (1995). Pronuclear visibility, development and transgene expression in IVM/IVF-derived porcine embryos. Theriogenology 44, 391–401.
Crossref | GoogleScholarGoogle Scholar |

Lane, M. , and Gardner, D. K. (1992). Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro.  Hum. Reprod. 7, 558–562.
PubMed |

Martinez-Madrid, B., Dominguez, E., Alonso, C., Diaz, C., Garcia, P., and  Sanchez, R. (2001). Effect of IVF medium and sperm concentration on fertilization parameters. In ‘Proceedings of the Sixth International Conference on Pig Reproduction’. (University of Missouri: Columbia, MO.)

Nagai, T. (1996). In vitro maturation and fertilization of pig oocytes. Anim. Reprod. Sci. 42, 153–163.
Crossref | GoogleScholarGoogle Scholar |

Nagai, T. , and Moor, R. M. (1990). Effect of oviduct cells on the incidence of polyspermy in pig eggs fertilized in vitro.  Mol. Reprod. Dev. 26, 377–382.
PubMed |

Nagai, T. , Niwa, K. , and Iritani, A. (1984). Effect of sperm concentration during preincubation in a defined medium on fertilization in vitro of pig follicular oocytes. J. Reprod. Dev. 70, 271–275.


Nagai, T. , Miura, K. , Kikuchi, K. , and Okamura, N. (1993). Effects of caffeine on in vitro fertilization of pig follicular oocytes. J. Reprod. Dev. 39, 347–352.


Niwa, K. (1993). Effectiveness of in vitro maturation and in vitro fertilization techniques in pigs. J. Reprod. Fertil. , 49–59. . 48


Palasz, A. , and Thundathil, T. J. (1998). The effect of volume of culture medium and embryo density on in vitro development of bovine embryos. Theriogenology 49, 212.
Crossref | GoogleScholarGoogle Scholar |

Paria, B. C. , and Dey, S. K. (1990). Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. Proc. Natl. Acad. Sci. USA 87, 4756–4760.
PubMed |

Peters, J. K. , Milliken, G. , and Davis, D. L. (2001). Development of porcine embryos in vitro: effects of culture medium and donor age. J. Anim. Sci. 79, 1578–1583.
PubMed |

Petters, R. M. , and Reed, M. L. (1991). Addition of taurine or hypotaurine to culture medium improves development of one- and two-cell pig embryos in vitro.  Theriogenology 35, 253.
Crossref | GoogleScholarGoogle Scholar |

Petters, R. M. , and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
PubMed |

Prather, R. S. , Sims, M. M. , and First, N. L. (1991). Culture of porcine embryos from the one-cell and two-cell stage to the blastocyst stage in sheep oviducts. Theriogenology 35, 1147–1152.
Crossref | GoogleScholarGoogle Scholar |

Rath, D. (1992). Experiments to improve in vitro fertilization techniques for in vivo-matured in culture porcine oocytes. Theriogenology 37, 885–896.
Crossref | GoogleScholarGoogle Scholar |

Raty, S. (2000). ‘Development and Testing of a New Microfluidic System for In Vitro Culture of Preimplantation Mammalian Embryos.’ (Memoire d’ingenieur, Ecole Superieure d’Agriculture de Purpan: Toulouse.)

Raty, S. (2001). ‘Design and Testing of Microfluidic Devices for Static Culture for Preimplantation Embryos.’ MSc Thesis (University of Illinois at Urbana-Champaign: Urbana)

Raty, S. , Davis, J. A. , Beebe, D. J. , Rodriguez-Zas, S. L. , and Wheeler, M. B. (2001). Culture in microchannels enhances in vitro embryonic development of preimplantation mouse embryos. Theriogenology 55, 241.


Reed, M. L. , Illera, M. J. , and Petters, R. M. (1992). In vitro culture of pig embryos. Theriogenology 37, 95–109.
Crossref | GoogleScholarGoogle Scholar |

Reiger, D. , Grisart, B. , Semple, E. , Van Langendonckt, A. , Betteridge, K. J. , and Dessy, F. (1995). Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos. J. Reprod. Fertil. 105, 91–98.
PubMed |

Roseman, H. M. (2003). ‘Porcine Oocyte Maturation and Embryo Culture Within Polydimethylsiloxane-Borosilicate Microchannels.’ MS Thesis (University of Illinois at Urbana-Champaign: Urbana)

Smith, S. , Schmidt, M. , Purwantara, B. , and Greve, T. (1992). Oviduct epithelial cell co-culture of early porcine embryos. Acta Vet. Scand. 33, 349–355.
PubMed |

Sturmey, R. G. , and Leese, H. J. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204.
PubMed |

Suzuki, K. , Eriksson, B. , Shimizu, H. , Nagai, T. , and Rodriguez-Martinez, H. (2000). Effect of hyaluronan on monospermic penetration of porcine oocytes fertilized in vitro.  Int. J. Androl. 23, 13–21.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Suzuki, K. , Asano, A. , Eriksson, B. , Niwa, K. , Nagai, T. , and Rodriguez-Martinez, H. (2002). Capacitation status and in vitro fertility of boar spermatozoa: effects of seminal plasma, cumulus–oocyte-complexes-conditioned medium and hyaluronan. Int. J. Androl. 25, 84–93.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Swain, J. E. , Bormann, C. L. , Clark, S. G. , Walters, E. M. , Wheeler, M. B. , and Krisher, R. L. (2002). Energy substrate utilization by various stage pre-implantation porcine embryos produced in vivo and in vitro.  Reproduction 123, 253–260.
PubMed |

Thompson, J. G. , Simpson, A. C. , Pugh, P. A. , and Tervit, H. R. (1992). Requirement for glucose during in vitro culture of sheep preimplantation embryos. Mol. Reprod. Dev. 31, 253–257.
PubMed |

Unger, M. A. , Chou, H. , Thorsen, T. , Scherer, A. , and Quake, S. R. (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vajta, G. , Peura, T. T. , Holm, P. , Paldi, A. , Greve, T. , Trounson, A. O. , and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol. Reprod. Dev. 55, 256–264.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wall, R. J. (2002). New gene transfer methods. Theriogenology 57, 189–201.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Walters, E. M. , Beebe, D. J. , and Wheeler, M. B. (2001). In vitro maturation of pig oocytes in polydimethylsiloxane (PDMS) and silicon microfluidic devices. Theriogenology 55, 497.


Walters, E. M. , Clark, S. G. , Roseman, H. , Beebe, D. J. , and Wheeler, M. B. (2003). Production of live piglets following in vitro embryo culture in microfluidic environment. Theriogenology 59, 353.


Wang, W. H. , Abeydeera, L. R. , Prather, R. S. , and Day, B. N. (1998). Morphologic comparison of ovulated and in vitro-matured porcine oocytes, with particular reference to polyspermy after in vitro fertilization. Mol. Reprod. Dev. 49, 308–316.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wheeler, M. B., Beebe, D. J., Walters, E. M., and  Raty, S. (2002). Microfluidic technology for in vitro embryo production. In ‘Proceedings of the 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology’. (Eds. A Dittmar and D Beebe)  pp. 104–108. (IEEE Inc.: New York.)

Wheeler, M. B. , and Walters, E. M. (2001). Transgenic technology and applications in swine. Theriogenology 56, 1345–1370.
Crossref | GoogleScholarGoogle Scholar | PubMed |

White, K. L. , Hehnke, K. , Rickords, L. F. , Southern, L. L. , Thompson, D. L. , and Wood, T. C. (1989). Early embryonic development in vitro by coculture with oviductal epithelium cells in pigs. Biol. Reprod. 41, 425–430.
PubMed |

Xu, X. , Ding, J. , Seth, P. C. , Harbison, D. S. , and Foxcroft, G. R. (1996a). In vitro fertilization of in vitro matured pig oocytes: effects of boar and ejaculate fraction. Theriogenology 45, 745–755.
Crossref | GoogleScholarGoogle Scholar |

Xu, X. , Seth, P. C. , Harbison, D. S. , Cheung, A. P. , and Foxcroft, G. R. (1996b). Semen dilution for assessment of boar ejaculate quality in pig IVM and IVF systems. Theriogenology 46, 1325–1337.
Crossref | GoogleScholarGoogle Scholar |

Yoshida, M. , Ishizaki, Y. , and Kawagishi, Y. (1990). Blastocyst formation of pig embryos resulting resulting from in vitro fertilization of oocytes matured in vitro.  J. Reprod. Fertil. 88, 1–8.
PubMed |

Yoshida, M. , Ishigaki, K. , Nagai, T. , Chikyu, M. , and Pursel, V. G. (1993a). Glutathione concentration during formation after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol. Reprod. 49, 89–94.
PubMed |

Yoshida, M. , Mizoguchi, Y. , Ishigaki, K. , Kojima, T. , and Nagai, T. (1993b). Birth of piglets derived from in vitro fertilization of pig oocytes matured in vitro.  Theriogenology 39, 1303–1311.
Crossref | GoogleScholarGoogle Scholar |

Yoshioka, K. , Suzuki, C. , Tanaka, A. , Anas, I. M.-K. , and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
PubMed |

Zheng, Y. S. , and Sirard, M. A. (1992). The effect of sera, bovine serum albumin and follicular cells on in vitro maturation and fertilization of porcine oocytes. Theriogenology 37, 779–790.
Crossref | GoogleScholarGoogle Scholar |