Ontogeny and the effects of corticosteroid pretreatment on aquaporin water channels in the ovine cerebral cortex
Nitin P. Ron A , John A. Kazianis A , James F. Padbury A , Courtney M. Brown A , Bethany G. McGonnigal A , Gregory D. Sysyn A , Grazyna B. Sadowska A and Barbara S. Stonestreet A BA Department of Pediatrics, Brown University School of Medicine and Women and Infants’ Hospital of Rhode Island, Providence, RI 02905, USA.
B Corresponding author. Email: bstonestreet@wihri.org
Reproduction, Fertility and Development 17(5) 535-542 https://doi.org/10.1071/RD03044
Submitted: 4 July 2003 Accepted: 31 March 2005 Published: 19 May 2005
Abstract
The aim of the present study was to determine the ontogeny and effects of corticosteroid pretreatment on aquaporin 4 (AQP4) channel mRNA and protein expression in the cerebral cortex of sheep during development. A portion of the cerebral cortex was snap-frozen from fetuses of dexamethasone- and placebo-treated ewes at 60%, 80% and 90% of gestation, dexamethasone- and placebo-treated newborn lambs and adult sheep. Cerebral cortical samples were obtained 18 h after the last of four 6 mg dexamethasone or placebo injections were given over 48 h to the ewes and adult sheep. Lambs were treated with 0.01 mg kg−1 dexamethasone or placebo in the same schedule as the ewes and adult sheep. Amplification of an ovine AQP4 cDNA fragment was accomplished by reverse transcription–polymerase chain reaction using primers based on a homologous bovine sequence. The resulting cDNA was used to determine AQP4 channel mRNA expression by Northern hybridisation using phosphorimaging. The relative abundance of AQP4 mRNA was normalised to the ovine ribosomal gene L32. A portion of the frontal cortex was also analysed for AQP4 protein expression by Western immunoblot. Densitometry was performed and the results expressed as a ratio to an adult brain pool. Aquaporin 4 channel mRNA and protein were detectable as early as at 60% gestation. There were no changes in AQP4 mRNA expression among the fetal, newborn and adult groups or after dexamethasone pretreatment in any age group. The expression of the AQP4 protein was higher (P < 0.05) in fetuses at 80% and 90% of gestation (2.9- and 3.3-fold, respectively), in lambs (3.2-fold) and in adult sheep (3.8-fold) compared with fetuses at 60% of gestation, as well as in adult sheep (1.3-fold) compared with fetuses at 80% of gestation. Dexamethasone pretreatment resulted in decreases (P < 0.05) in AQP4 protein expression in the lambs and adult sheep, but not in the fetal groups. We conclude that: (1) AQP4 mRNA and protein were expressed early in fetal and throughout ovine development; (2) protein, but not mRNA, expression increased between 60% and 80% of gestation and did not differ from adult levels by 90% of gestation; and (3) dexamethasone pretreatment resulted in decreases in AQP4 protein expression in lambs and adult sheep, but not in fetuses. The maturational increases in AQP4 protein expression and dexamethasone-related decreases in expression were post-transcriptional, because changes in AQP4 mRNA expression were not observed.
Extra keywords: aquaporin 4, brain, development, dexamethasone, fetus, newborn.
Acknowledgment
This work was supported by National Institutes of Health grant HD 34618.
Agre, P. , Preston, G. M. , Smith, B. L. , Jung, J. S. , Raina, S. , Moon, C. , Guggino, W. B. , and Nielsen, S. (1993). Aquaporin CHIP: the archetypal molecular water channel. Am. J. Physiol. 265, F463–F476.
| PubMed |
Amiry-Moghaddam, M. , Otsuka, T. , Hurn, P. D. , Traystman, R. J. , and Haug, F. M. , et al. (2003). An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc. Natl Acad. Sci. USA 100, 2106–2111.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Beitz, E. , and Schultz, J. E. (1999). The mammalian aquaporin water channel family: a promising new drug target. Curr. Med. Chem. 6, 457–467.
| PubMed |
Berry, L. M. , Polk, D. H. , Ikegami, M. , Jobe, A. H. , Padbury, J. F. , and Ervin, M. G. (1997). Preterm newborn lamb renal and cardiovascular responses after fetal or maternal antenatal betamethasone. Am. J. Physiol. 272, R1972–R1979.
| PubMed |
Chomczynski, P. , and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem. 162, 156–159.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Dobbing, J. , and Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Hum. Dev. 3, 79–83.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Echevarria, M. , and Ilundain, A. A. (1998). Aquaporins. J. Physiol. Biochem. 54, 107–118.
| PubMed |
Han, Z. , Wax, M. B. , and Patil, R. V. (1998). Regulation of aquaporin-4 water channels by phorbol ester-dependent protein phosphorylation. J. Biol. Chem. 273, 6001–6004.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Inoue, M. , Wakayama, Y. , Liu, J. W. , Murahashi, M. , Shibuya, S. , and Oniki, H. (2002). Ultrastructural localization of aquaporin 4 and alpha1-syntrophin in the vascular feet of brain astrocytes. Tohoku J. Exp. Med. 197, 87–93.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Ishibashi, K. , Kuwahara, M. , Gu, Y. , Kageyama, Y. , Tohsaka, A. , Suzuki, F. , Marumo, F. , and Sasaki, S. (1997). Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. J. Biol. Chem. 272, 20 782–20 786.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jung, J. S. , Bhat, R. V. , Preston, G. M. , Guggino, W. B. , Baraban, J. M. , and Agre, P. (1994). Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc. Natl Acad. Sci. USA 91, 13 052–13 056.
| PubMed |
Kobayashi, H. , Minami, S. , Itoh, S. , Shiraishi, S. , Yokoo, H. , Yanagita, T. , Uezono, Y. , Mohri, M. , and Wada, A. (2001). Aquaporin subtypes in rat cerebral microvessels. Neurosci. Lett. 297, 163–166.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Liu, H. , Hooper, S. B. , Armugam, A. , Dawson, N. , Ferraro, T. , Jeyaseelan, K. , Thiel, A. , Koukoulas, I. , and Wintour, E. M. (2003). Aquaporin gene expression and regulation in the ovine fetal lung. J. Physiol. 551, 503–514.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Lu, M. , Lee, M. D. , Smith, B. L. , Jung, J. S. , Agre, P. , Verdijk, M. A. , Merkx, G. , Rijss, J. P. , and Deen, P. M. (1996). The human AQP4 gene: definition of the locus encoding two water channel polypeptides in brain. Proc. Natl Acad. Sci. USA 93, 10 908–10 912.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Moon, C. , Preston, G. M. , Griffin, C. A. , Jabs, E. W. , and Agre, P. (1993). The human aquaporin-CHIP gene. Structure, organization, and chromosomal localization. J. Biol. Chem. 268, 15 772–15 778.
| PubMed |
Nagelhus, E. A. , Veruki, M. L. , Torp, R. , Haug, F. M. , Laake, J. H. , Nielsen, S. , Agre, P. , and Ottersen, O. P. (1998). Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Muller cells and fibrous astrocytes. J. Neurosci. 18, 2506–2519.
| PubMed |
National Institutes of Health Consensus Development Panel (1995). Effect of corticosteroids for fetal maturation on perinatal outcomes. JAMA 273, 413–418.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nico, B. , Frigeri, A. , Nicchia, G. P. , Corsi, P. , and Ribatti, D. , et al. (2003). Severe alterations of endothelial and glial cells in the blood–brain barrier of dystrophic mdx mice. Glia 42, 235–251.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Nielsen, S. , Nagelhus, E. A. , Amiry-Moghaddam, M. , Bourque, C. , Agre, P. , and Ottersen, O. P. (1997). Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J. Neurosci. 17, 171–180.
| PubMed |
Padbury, J. F. , Polk, D. H. , Ervin, M. G. , Berry, L. M. , Ikegami, M. , and Jobe, A. H. (1995). Postnatal cardiovascular and metabolic responses to a single intramuscular dose of betamethasone in fetal sheep born prematurely by Cesarean section. Pediatr. Res. 38, 709–715.
| PubMed |
Padbury, J. F. , McGonnigal, B. , Tseng, Y. T. , Nguyen, T. T. , and Stabila, J. P. (2000). Cloning and sequence analysis of the rat norepinephrine transporter promoter. Brain Res. Mol. Brain Res. 83, 128–132.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Pao, G. M. , Wu, L. F. , Johnson, K. D. , Hofte, H. , Chrispeels, M. J. , Sweet, G. , Sandal, N. N. , and Saier, M. H. (1991). Evolution of the MIP family of integral membrane transport proteins. Mol. Microbiol. 5, 33–37.
| PubMed |
Papadopoulos, M. C. , Krishna, S. , and Verkman, A. S. (2002). Aquaporin water channels and brain edema. Mt Sinai J. Med. 69, 242–248.
| PubMed |
Preston, G. M. , and Agre, P. (1991). Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc. Natl Acad. Sci. USA 88, 11 110–11 114.
| PubMed |
Sobue, K. , Yamamoto, N. , Yoneda, K. , Fujita, K. , Miura, Y. , Asai, K. , Tsuda, T. , Katsuya, H. , and Kato, T. (1999). Molecular cloning of two bovine aquaporin-4 cDNA isoforms and their expression in brain endothelial cells. Biochim. Biophys. Acta 1489, 393–398.
| PubMed |
Stonestreet, B. S. , Le, E. , and Berard, D. J. (1993). Circulatory and metabolic effects of beta-adrenergic blockade in the hyperinsulinemic ovine fetus. Am. J. Physiol. 265, H1098–H1106.
| PubMed |
Stonestreet, B. S. , Petersson, K. H. , Sadowska, G. B. , Pettigrew, K. D. , and Patlak, C. S. (1999). Antenatal steroids decrease blood-brain barrier permeability in the ovine fetus. Am. J. Physiol. 276, R283–R289.
Stonestreet, B. S. , Sadowska, G. B. , McKnight, A. J. , Patlak, C. , and Petersson, K. H. (2000). Exogenous and endogenous corticosteroids modulate blood–brain barrier development in the ovine fetus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R468–R477.
| PubMed |
Stonestreet, B. S. , Elitt, C. M. , Markowitz, J. , Petersson, K. H. , and Sadowska, G. B. (2003a). Effects of antenatal corticosteroids on regional brain and non-neural tissue water content in the ovine fetus. J. Soc. Gynecol. Invest. 10, 59–66.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Stonestreet, B. S. , Oen-Hsiao, J. M. , Petersson, K. H. , Sadowska, G. B. , and Patlak, C. S. (2003b). Regulation of brain water during acute hyperosmolality in ovine fetuses, lambs and adults. J. Appl. Physiol. 94, 1491–1500.
| PubMed |
Sysyn, G. D. , Petersson, K. H. , Patlak, C. S. , Sadowska, G. B. , and Stonestreet, B. S. (2001). Effects of postnatal dexamethasone on blood–brain barrier permeability and brain water content in newborn lambs. Am. J. Physiol. Regul. Intergr. Comp. Physiol. 280, R547–R553.
Tan, R. C. , Ikegami, M. , Jobe, A. H. , Yao, L. Y. , Possmayer, F. , and Ballard, P. L. (1999). Developmental and glucocorticoid regulation of surfactant protein mRNAs in preterm lambs. Am. J. Physiol. 277, L1142–L1148.
| PubMed |
Tseng, Y. T. , and Padbury, J. F. (1998). Expression of a pulmonary endothelial norepinephrine transporter. J. Neural Transm. 105, 1187–1191.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Turtzo, L. C. , Lee, M. D. , Lu, M. , Smith, B. L. , Copeland, N. G. , Gilbert, D. J. , Jenkins, N. A. , and Agre, P. (1997). Cloning and chromosomal localization of mouse aquaporin 4: exclusion of a candidate mutant phenotype, ataxia. Genomics 41, 267–270.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Umenishi, F. , Verkman, A. S. , and Gropper, M. A. (1996). Quantitative analysis of aquaporin mRNA expression in rat tissues by RNase protection assay. DNA Cell Biol. 15, 475–480.
| PubMed |
Unno, N. , Wu, W. X. , Ding, X. Y. , Li, C. , Hing, W. K. , and Nathanielsz, P. W. (1998). The effects of fetal adrenalectomy at 110 days gestational age on AVP and CRH mRNA expression in the hypothalamic paraventricular nucleus of the ovine fetus. Brain Res. Dev. Brain Res. 106, 119–128.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Vajda, Z. , Promeneur, D. , Doczi, T. , Sulyok, E. , Frokiaer, J. , Ottersen, O. P. , and Nielsen, S. (2000). Increased aquaporin-4 immunoreactivity in rat brain in response to systemic hyponatremia. Biochem. Biophys. Res. Commun. 270, 495–503.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
van Os, C. H. , Kamsteeg, E. J. , Marr, N. , and Deen, P. M. (2000). Physiological relevance of aquaporins: luxury or necessity? Pflügers Arch. 440, 513–520.
| PubMed |
Venero, J. L. , Vizuete, M. L. , Ilundain, A. A. , Machado, A. , Echevarria, M. , and Cano, J. (1999). Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience 94, 239–250.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Wen, H. , Nagelhus, E. A. , Amiry-Moghaddam, M. , Agre, P. , Ottersen, O. P. , and Nielsen, S. (1999). Ontogeny of water transport in rat brain: postnatal expression of the aquaporin-4 water channel. Eur. J. Neurosci. 11, 935–945.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Yasui, M. , Serlachius, E. , Lofgren, M. , Belusa, R. , Nielsen, S. , and Aperia, A. (1997). Perinatal changes in expression of aquaporin-4 and other water and ion transporters in rat lung. J. Physiol. 505, 3–11.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zelenin, S. , Gunnarson, E. , Alikina, T. , Bondar, A. , and Aperia, A. (2000). Identification of a new form of AQP4 mRNA that is developmentally expressed in mouse brain. Pediatr. Res. 48, 335–339.
| PubMed |