Register      Login
Australian Journal of Physics Australian Journal of Physics Society
A journal for the publication of original research in all branches of physics
RESEARCH ARTICLE

Quantum Electrodynamics in Strong Magnetic Fields. I. Electron States

DB Melrose and AJ Parle

Australian Journal of Physics 36(6) 755 - 774
Published: 1983

Abstract

Dirac's equation in the presence of a static magnetic field is solved in terms of both cartesian and cylindrical coordinates, and solutions are found for three different spin operators. Choosing the spin to correspond to the parallel component Ilz of the magnetic moment operator leads to wavefunctions (a) which are symmetric between electron and positron states and (b) which are eigenfunctions of the Hamiltonian including radiative corrections. A vertex function [y:',~(k)l~ is defined and shown to be proportional to a gauge independent quantity [T::~(k)l". Symmetry properties of [T~:~(k)l~ are derived in the case where the spin corresponds to Ilz. The use of the vertex function is illustrated by deriving the electron propagator in coordinate space from the vacuum expectation value. Properties of functions J~, _n(x) which appear extensively and are related to generalized Laguerre polynomials are derived and summarized in the Appendix.

https://doi.org/10.1071/PH830755

© CSIRO 1983

PDF (1.7 MB) Export Citation

Share

Share on Facebook Share on Twitter Share on LinkedIn Share via Email

View Dimensions