10.1071/PC24001

Pacific Conservation Biology

Supplementary Material

Determining the geographic distribution and ecology of the Critically Endangered Kaputar rock skink (*Egernia roomi*)

Nicholas Gale^{A,*}, Jules E. Farquhar^B, Amelia Carlesso^A, Kylie Robert^A, and David G. Chapple^B

^ASchool of Life Sciences, La Trobe University, Bundoora, Vic., Australia.

^BSchool of Biological Sciences, Monash University, Clayton, Vic., Australia.

^{*}Correspondence to: Nicholas Gale School of Life Sciences, La Trobe University, Bundoora, Vic., Australia Email: n.pgale1@gmail.com

SUPPLEMENTARY MATERIAL FILE 1

Figure S1. PCA biplot showing correlations among variables for the final set of environmental predictor variables used for habitat suitability modelling.

Figure S2. Mantle correlogram showing the spatial autocorrelation of cleaned (A) and thinned (B) species occurrence records at 0 to 6,000 m. The mantle correlogram of the cleaned species occurrence records show a spike in spatial autocorrelation, which potentially indicates spatial non-independence at 0 to 1,000 m.

Variable contribution

Figure S3. Estimates of relative (%) contributions of environmental predictor variables to the optimal MaxEnt model.

Figure S4. Response curves characterizing how each environmental predictor variable affected the MaxEnt predictions for the best performing model.

Table S1. Full set of environmental predictor variables considered in variable selection for modelling the distribution of *Egernia roomi*. Bold indicates the database and a URL is provided. Italics indicate derived data.

Source/layer	Year	Spatial Resolution	
WorldClim v2.1			
(http://www.worldclim.org/)			
BO1 Annual Mean Temp (°C)	1970–2000	1 x 1 km	
BIO2 Mean Diurnal Range (°C)	1970–2000	1 x 1 km	

BIO3 Isothermality (100 * BIO2 / BIO7)	1970–2000	1 x 1 km
BIO4 Temp Seasonality (100 * SD)	1970–2000	1 x 1 km
BIO5 Max Temp of Warmest Month (°C)	1970–2000	1 x 1 km
BIO6 Min Temp of Coldest Month (°C)	1970–2000	1 x 1 km
BIO7 Temp Annual Range (°C) (BIO5–BIO6)	1970–2000	1 x 1 km
BIO8 Mean Temp of Wettest Quarter (°C)	1970–2000	1 x 1 km
BIO9 Mean Temp of Driest Quarter (°C)	1970–2000	1 x 1 km
BIO10 Mean Temp of Warmest Quarter (°C)	1970–2000	1 x 1 km
BIO11 Mean Temp of Coldest Quarter (°C)	1970–2000	1 x 1 km
BIO12 Annual Precip (mm)	1970–2000	1 x 1 km
BIO13 Precip of Wettest Month (mm)	1970–2000	1 x 1 km
BIO14 Precip of Driest Month (mm)	1970–2000	1 x 1 km
BIO15 Precip Seasonality (CV)	1970–2000	1 x 1 km
BIO16 Precip of Wettest Quarter (mm)	1970–2000	1 x 1 km
BIO17 Precip of Driest Quarter (mm)	1970–2000	1 x 1 km
BIO18 Precip of Warmest Quarter (mm)	1970–2000	1 x 1 km
BIO19 Precip of Coldest Quarter (mm)	1970–2000	1 x 1 km
ENVIREM		
(https://envirem.github.io/)		
Thornthwaite aridity index	1960–1990	1 x 1 km
tri — terrain roughness index	NA	1 x 1 km
topoWet — SAGA-GIS topographic wetness index	NA	1 x 1 km
Geoscience Australia		
(http://www.ga.gov.au/search/index.html#/)		
Euclidean Distance to Water Courses	NA	1 x 1 km
Euclidean Distance to Water Bodies	NA	1 x 1 km
Terrestrial Ecosystem Research Network (TERN)		
(https://www.tern.org.au/)		
Total Available Soil Water (mm)	in February,	1 x 1 km
	2022	
NASA Earthdata		
(https://earthdata.nasa.gov/)		

Normalized Difference Vegetation Index (NDVI)	1 1				
(MOD13A3)	2000–2021	I X I KIII			
Socioeconomic Data and Applications Center					
(sedac) (https://sedac.ciesin.columbia.edu/)					
Global Human Influence Index (Geographic) v2	1995–2004	1 x 1 km			

Table S2. Metrics used to evaluate the performance of models.

Evaluation metrics	Description
AICc Akaike (1974); Warren and Seifert (2011)	Akaike Information Criterion (corrected for small sample sizes; AICc). This is a widely used model selection criteria that balances model complexity with goodness-of-fit. The model with the lowest AICc value is selected as the optimal model.
AUC _{TEST} Hanley and McNeil (1982)	The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) based on the predicted values of the testing dataset. We interpreted the AUC _{test} values based on Swets (1988), where values >0.90 = excellent, >0.80-0.90 = good, >0.70-0.80 = fair, >0.60-0.70 = poor, and >0.50-0.60 = fail.
AUCDIFF Warren and Seifert (2011)	The difference between the AUC value based on training localities (AUC_{TRAIN}) and AUC_{TEST} ; If $AUC_{TRAIN} < AUC_{TEST}$, the returned value is zero. Increasing values of AUC_{DIFF} indicate increasing model overfitting to the training dataset.
OR_{mtp} Fielding and Bell (1997)	Omission rate at a minimum training presence threshold (OR_{MTP}) – that is, the proportion of occurrence records in testing dataset located in areas with predicted suitability values (MaxEnt relative occurrence rates) lower than that associated with the lowest-ranking occurrence record in the training dataset. OR _{MTP} scores closer to the expected score of zero indicate low or minimal model overfitting to training dataset.
OR ₁₀ Fielding and Bell (1997)	Omission rate at 10% training threshold (OR_{10}) – that is, the proportion of occurrence records in test datasets located in areas with predicted suitability values (MaxEnt relative occurrence rates) lower than that excluding the 10% of training localities with the lowest predicted suitability. OR ₁₀ scores closer to the expected score of 10% indicate low or minimal model overfitting to training dataset.
Boyce Index (BI) Boyce <i>et al.</i> (2002); Hirzel <i>et al.</i> (2006)	The Boyce index measures the deviation of model predictions from a random distribution of the observed presences across the prediction gradients (Boyce et al. 2002). Values range between - 1 and +1; positive values (towards +1) indicate good to perfect predictions, zero or near-zero indicates predictions that are no different from random, and negative values (towards -1) indicate counter-predictions.

Table S3.

Survey sites, including previously known skink locations. Site naming conventions follow those on the Avenza NSW topographic series maps or were given names that best describe the site location/landform.

Site	Site name	Declared	Site	Elevation	E. roomi
ID		wilderness	coordinates	range (m)	presence
		area			
А	Summit	N/A	-30.273414,	1450–	Yes
			150.164578	1509	
В	Mt Dowe	N/A	-30.283506,	1420-	Yes
			150.16597	1440	
С	The	N/A	-30.282882,	1350-	Yes
	Governor		150.143237	1370	
1	Mt	Rusden	-30.286125,	1100-	No
	Yulludunida		150.080707	1160	
2	Mt Coryah	Rusden	-30.279791,	1330-	No
			150.121298	1360	
3	Governor	N/A	-30.282463,	1220-	No
	Lowers		150.141081	1270	
4	Coryah Gap	N/A	-30.291401,	1170–	No
	Firetrail		150.140762	1180	
5	Governor	N/A	-30.277177,	1390–	No
	Cliffs		150.154044	1420	
6	Rocky	N/A	-30.288427,	1380-	No
	Plateau		150.149658	1400	
	Firetrail				
7	Rangers	Rusden	-30.295769,	1250-	No
	Lookout		150.156525	1280	
8	Lairds	Rusden	-30.305924,	1140-	No
	Lookout		150.152938	1180	
9	Sinclair Peak	N/A	-30.284581,	1410–	Yes
			150.152007	1420	
10	West	N/A	-30.274766,	1380-	Yes
	Kaputar		150.155853	1450	
	Rocks				
11	Summit East	N/A	-30.271769,	1390-	Yes
			150.167583	1450	
12	Eckford	N/A	-30.288235,	1360-	Yes
	Lookout		150.164986	1380	
13	Dawson	N/A	-30.282022,	1420-	Yes
	Rocks		150.168427	1430	

14	Bundabulla	N/A	-30.290296,	1300-	Yes
	Lookout		150.171228	1380	
15	West	Rusden	-30.295725,	1170–	Yes
	Bundabulla		150.173039	1300	
	Cliffs				
16	West	Rusden	-30.3084,	1070-	No
	Bundabulla		150.178123	1150	
	south				
17	East	Rusden	-30.312749,	1050-	No
	Bundabulla		150.185042	1100	
	south				
18	East	Rusden	-30.297344,	1140-	Yes
	Bundabulla		150.178649	1300	
	Cliffs				
19	Mt Lindsay	Rusden	-30.291683,	1320-	Yes
	South		150.177269	1360	
20	Mt Lindsay	N/A	-30.283027,	1360-	Yes
			150.175668	1420	
21	Mt Lindsay	N/A	-30.280533,	1350-	Yes
	Lowers		150.180734	1380	
22	Barraba	N/A	-30.27915,	1400-	Yes
	Junction		150.172935	1420	
23	Pound Mtn	Nandewar	-30.227549,	1080-	No
	South Aspect		150.154832	1210	
24	North Capel	Nandewar	-30.25453,	1060-	No
	Spur		150.170496	1090	
25	Lindesay	N/A	-30.28671,	1270-	Yes
	Rocks		150.186727	1320	
26	Brushy Mtn	N/A	-30.303591,	1140-	No
			150.201272	1180	
27	Horton	Nandewar	-30.283679,	1190-	Yes
	Headwaters		150.199864	1250	
	South				
28	Horton	Nandewar	-30.276341,	1280-	Yes
	Headwaters		150.195141	1310	
	North				
29	Mt Capel	Nandewar	-30.264258,	1310-	No
			150.179994	1430	
30	Grattai Mtn	Grattai	-30.090778,	1160-	No
			150.064035	1303	

REFERENCES

Akaike H (1974) A new look at the statistical model identification. *IEEE Transactions on Automatic Control* **19**, 716–723. doi:10.1109/TAC.1974.1100705

Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection functions. *Ecological Modelling* **157**, 281–300. doi:10.1016/S0304-3800(02)00200-4

- Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. *Environmental Conservation* 24, 38–49. doi:10.1017/S0376892997000088
- Hanley JA, McNeil B (1982) The Meaning and Use of the Area Under a Receiver Operating Characteristic (ROC) Curve. *Radiology* **143**, 29–36. doi:10.1148/radiology.143.1.7063747
- Hirzel AH, Le Lay G, Helfer V, Randin C, Guisan A (2006) Evaluating the ability of habitat suitability models to predict species presences. *Ecological Modelling* **199**, 142–152. doi:10.1016/j.ecolmodel.2006.05.017
- Warren D, Seifert S (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. *Ecological Applications* 21, 335–342. doi:10.2307/29779663