Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE (Open Access)

Red hot frogs: identifying the Australian frogs most at risk of extinction

Hayley M. Geyle https://orcid.org/0000-0001-9282-8953 A AD , Conrad J. Hoskin https://orcid.org/0000-0001-8116-6085 B , Deborah S. Bower C , Renee Catullo D E , Simon Clulow F , Michael Driessen https://orcid.org/0000-0003-2553-0027 G H , Katrina Daniels I , Stephen T. Garnett https://orcid.org/0000-0002-0724-7060 A , Deon Gilbert J , Geoffrey W. Heard K L M , Jean-Marc Hero N O P , Harry B. Hines Q R , Emily P. Hoffmann E , Greg Hollis S , David A. Hunter T , Frank Lemckert U V , Michael Mahony W , Gerry Marantelli X , Keith R. McDonald R , Nicola J. Mitchell https://orcid.org/0000-0003-0744-984X E , David Newell Y , J. Dale Roberts https://orcid.org/0000-0001-8040-8839 E , Ben C. Scheele Z , Michael Scroggie K , Eric Vanderduys AA , Skye Wassens L , Matt West AB , John C. Z. Woinarski https://orcid.org/0000-0002-1712-9500 A and Graeme R. Gillespie https://orcid.org/0000-0001-9727-8436 AC
+ Author Affiliations
- Author Affiliations

A Threatened Species Recovery Hub, National Environmental Science Program, Research Institute for the Environment and Livelihoods, Charles Darwin University, NT 0909, Australia.

B College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

C School of Environmental and Rural Science, The University of New England, NSW 2351, Australia.

D Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.

E School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia.

F Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, Bruce, ACT 2617, Australia.

G Department of Primary Industries, Parks, Water and Environment, 134 Macquarie Street Hobart, Tas. 7000, Australia.

H Discipline of Geography and Spatial Sciences, School of Technology, Environments and Design, University of Tasmania, Private Bag 78, Hobart, Tas. 7001, Australia.

I Department of Agriculture, Water and the Environment, Canberra, ACT 2601, Australia.

J Wildlife Conservation and Science, Zoos Victoria, Parkville, Vic. 3052, Australia.

K Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Vic. 3084, Australia.

L Institute of Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Thurgoona, NSW 2640, Australia.

M Fenner School for Environment and Society, The Australian National University, Canberra, ACT 2601, Australia.

N STEM Academy, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.

O School of Science and Engineering, The University of the Sunshine Coast, Qld 4556, Australia.

P Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, CT27NR, UK.

Q Queensland Parks and Wildlife Service and Partnerships, Department of Environment and Science, Bellbowrie, Qld 4070, Australia.

R Biodiversity, Queensland Museum, South Brisbane, Qld 4101, Australia.

S Baw Baw Shire Council, Warragul, Vic. 3820, Australia.

T New South Wales Department of Planning, Industry and Environment, Albury, NSW 2640, Australia.

U Eco Logical Australia, Newcastle, NSW 2300, Australia.

V Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.

W School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia.

X Amphibian Research Centre, Pearcedale, Vic. 3912, Australia.

Y Forest Research Centre, School of Environment Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia.

Z Threatened Species Recovery Hub, National Environmental Science Program, Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2601, Australia.

AA CSIRO Ecosystem Sciences, GPO Box 2583, Brisbane, Qld 4000, Australia.

AB Threatened Species Recovery Hub, National Environmental Science Program, School of BioSciences, The University of Melbourne, Parkville, Vic. 3052, Australia.

AC Flora and Fauna Division, Department of Environment, Parks and Water Security, Palmerston, NT 0831, Australia.

AD Corresponding author. Email: hayley.geyle@cdu.edu.au

Pacific Conservation Biology 28(3) 211-223 https://doi.org/10.1071/PC21019
Submitted: 22 March 2021  Accepted: 9 June 2021   Published: 20 August 2021

Journal Compilation © CSIRO 2022 Open Access CC BY

Abstract

More than a third of the world’s amphibian species are listed as Threatened or Extinct, with a recent assessment identifying 45 Australian frogs (18.4% of the currently recognised species) as ‘Threatened’ based on IUCN criteria. We applied structured expert elicitation to 26 frogs assessed as Critically Endangered and Endangered to estimate their probability of extinction by 2040. We also investigated whether participant experience (measured as a self-assigned categorical score, i.e. ‘expert’ or ‘non-expert’) influenced the estimates. Collation and analysis of participant opinion indicated that eight species are at high risk (>50% chance) of becoming extinct by 2040, with the disease chytridiomycosis identified as the primary threat. A further five species are at moderate–high risk (30–50% chance), primarily due to climate change. Fourteen of the 26 frog species are endemic to Queensland, with many species restricted to small geographic ranges that are susceptible to stochastic events (e.g. a severe heatwave or a large bushfire). Experts were more likely to rate extinction probability higher for poorly known species (those with <10 experts), while non-experts were more likely to rate extinction probability higher for better-known species. However, scores converged following discussion, indicating that there was greater consensus in the estimates of extinction probability. Increased resourcing and management intervention are urgently needed to avert future extinctions of Australia’s frogs. Key priorities include developing and supporting captive management and establishing or extending in-situ population refuges to alleviate the impacts of disease and climate change.

Keywords: amphibian, anthropogenic mass extinction crisis, Australia, biodiversity conservation, climate change, Delphi, expert elicitation, frog, IDEA, IUCN criteria, threatening processes.


References

Andrew, P., Cogger, H., Driscoll, D., Flakus, S., Harlow, P., Maple, D., Misso, M., Pink, C., Retallick, K., Rose, K., Tiernan, B., West, J., and Woinarski, J. C. Z. (2018). Somewhat saved: a captive breeding programme for two endemic Christmas Island lizard species, now extinct in the wild. Oryx 52, 171–174.
Somewhat saved: a captive breeding programme for two endemic Christmas Island lizard species, now extinct in the wild.Crossref | GoogleScholarGoogle Scholar |

Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., Slocombe, R., Ragan, M. A., Hyatt, A. D., McDonald, K. R., Hines, H. B., Lips, K. R., Marantelli, G., and Parkes, H. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America 95, 9031–9036.
Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America.Crossref | GoogleScholarGoogle Scholar | 9671799PubMed |

Bower, D. S., Lips, K. R., Schwarzkopf, L., Georges, A., and Clulow, S. (2017). Amphibians on the brink. Science 357, 454–455.
Amphibians on the brink.Crossref | GoogleScholarGoogle Scholar | 28774916PubMed |

Browne, R. K., Silla, A. J., Upton, R., Della-Togna, G., Marcec-Greaves, R., Shishova, N. V., Uteshev, V. K., Proaño, B., Pérez, O. D., Mansour, N., Kaurova, S. A., Gakhova, E. N., Cosson, J., Dyzuba, B., Kramarova, L. I., McGinnity, D., Gonzalez, M., Clulow, J., and Clulow, S. (2019). Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 133, 187–200.
Sperm collection and storage for the sustainable management of amphibian biodiversity.Crossref | GoogleScholarGoogle Scholar | 31155034PubMed |

Budescu, D. V., and Chen, E. (2014). Identifying expertise to extract the wisdom of the crowds. Management Science 61, 267–280.
Identifying expertise to extract the wisdom of the crowds.Crossref | GoogleScholarGoogle Scholar |

Burgman, M. A., McBride, M., Ashton, R., Speirs-Bridge, A., Flander, L., Wintle, B., Fidler, F., Rumpff, L., and Twardy, C. (2011). Expert status and performance. PLoS ONE 6, e22998.
Expert status and performance.Crossref | GoogleScholarGoogle Scholar | 21829574PubMed |

Canessa, S., Converse, S. J., West, M., Clemann, N., Gillespie, G., McFadden, M., Silla, A. J., Parris, K. M., and McCarthy, M. A. (2016). Planning for ex situ conservation in the face of uncertainty. Conservation Biology 30, 599–609.
Planning for ex situ conservation in the face of uncertainty.Crossref | GoogleScholarGoogle Scholar | 26306549PubMed |

Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M., and Palmer, T. M. (2015). Accelerated modern human-induced species losses: entering the sixth mass extinction. Science Advances 1, e1400253.
Accelerated modern human-induced species losses: entering the sixth mass extinction.Crossref | GoogleScholarGoogle Scholar | 26601195PubMed |

Clulow, J., and Clulow, S. (2016). Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing the ARTs up to speed. Reproduction, Fertility and Development 28, 1116–1132.
Cryopreservation and other assisted reproductive technologies for the conservation of threatened amphibians and reptiles: bringing the ARTs up to speed.Crossref | GoogleScholarGoogle Scholar |

Clulow, S., Gould, J., James, H., Stockwell, M., Clulow, J., and Mahony, M. (2018). Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: Implications for translocations. Journal of Applied Ecology 55, 830–840.
Elevated salinity blocks pathogen transmission and improves host survival from the global amphibian chytrid pandemic: Implications for translocations.Crossref | GoogleScholarGoogle Scholar |

Clulow, J., Upton, R., Trudeau, V. L., and Clulow, S. (2019). Amphibian assisted reproductive technologies: moving from technology to application. In ‘Reproductive Sciences in Animal Conservation’. (Eds P. Comizzoli, J. Brown, W. Holt.) pp. 413–463. (Springer: Cham).

Cogger, H. (2018). ‘Reptiles and Amphibians of Australia’, Updated 7th edn. (CSIRO Publishing: Melbourne.)

Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A., and Rohr, J. R. (2019). An interaction between climate change and infectious disease drove widespread amphibian declines. Global Change Biology 25, 927–937.
An interaction between climate change and infectious disease drove widespread amphibian declines.Crossref | GoogleScholarGoogle Scholar | 30484936PubMed |

Cushman, S. A. (2006). Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biological Conservation 128, 231–240.
Effects of habitat loss and fragmentation on amphibians: a review and prospectus.Crossref | GoogleScholarGoogle Scholar |

Czechura, G. V., and Ingram, G. J. (1990). Taudactylus diurnus and the case of the disappearing frogs. Memoirs of the Queensland Museum 29, 361–365.

DAWE (2015). IBRA subregion Australia ver. 7.0 – ARC. Bioregional Assessment Source Dataset. Available at https://www.environment.gov.au/land/nrs/science/ibra#ibra [Accessed 10 Decemeber 2020].

Fisher, M. C., and Garner, T. W. J. (2020). Chytrid fungi and global amphibian declines. Nature Reviews Microbiology 18, 332–343.
Chytrid fungi and global amphibian declines.Crossref | GoogleScholarGoogle Scholar | 32099078PubMed |

Garner, T. W. J., Schmidt, B. R., Martel, A., Pasmans, F., Muths, E., Cunningham, A. A., Weldon, C., Fisher, M. C., and Bosch, J. (2016). Mitigating amphibian chytridiomycoses in nature. Philosophical Transactions of the Royal Society B: Biological Sciences 371, 20160207.
Mitigating amphibian chytridiomycoses in nature.Crossref | GoogleScholarGoogle Scholar |

Geyle, H. M., Woinarski, J. C. Z., Baker, G. B., Dickman, C. R., Dutson, G., Fisher, D. O., Ford, H., Holdsworth, M., Jones, M. E., Kutt, A., Legge, S., Leiper, I., Loyn, R., Murphy, B. P., Menkhorst, P., Reside, A. E., Ritchie, E. G., Roberts, F. E., Tingley, R., and Garnett, S. T. (2018). Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions. Pacific Conservation Biology 24, 157–167.
Quantifying extinction risk and forecasting the number of impending Australian bird and mammal extinctions.Crossref | GoogleScholarGoogle Scholar |

Geyle, H. M., Tingley, R., Amey, A. P., Cogger, H., Couper, P. J., Cowan, M., Craig, M. D., Doughty, P., Driscoll, D. A., Ellis, R. J., Emery, J.-P., Fenner, A., Gardner, M. G., Garnett, S. T., Gillespie, G. R., Greenlees, M. J., Hoskin, C. J., Keogh, J. S., Lloyd, R., Melville, J., McDonald, P. J., Michael, D. R., Mitchell, N. J., Sanderson, C., Shea, G. M., Sumner, J., Wapstra, E., Woinarski, J. C. Z., and Chapple, D. (2020). Reptiles on the brink: identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pacific Conservation Biology 27, 3–12.
Reptiles on the brink: identifying the Australian terrestrial snake and lizard species most at risk of extinction.Crossref | GoogleScholarGoogle Scholar |

Geyle, H. M., Braby, M. F., Andren, M., Beaver, E. P., Bell, P., Byrne, C., Castles, M., Douglas, F., Glatz, R. V., Haywood, B., Hendry, P., Kitching, R. L., Lambkin, T. A., Meyer, C. E., Moore, M. D., Moss, J. T., Nally, S., New, T. R., Palmer, C. M., Petrie, E., Potter-Craven, J., Richards, K., Sanderson, C., Stolarski, A., Taylor, G. S., Williams, M. R., Woinarski, J. C. Z., and Garnett, S. T. (2021). Butterflies on the brink: identifying the Australian butterflies (Lepidoptera) most at risk of extinction. Austral Entomology 60, 98–110.
Butterflies on the brink: identifying the Australian butterflies (Lepidoptera) most at risk of extinction.Crossref | GoogleScholarGoogle Scholar |

Gibbons, J. W., Scott, D. E., Ryan, T. J., Buhlmann, K. A., Tuberville, T. D., Metts, B. S., Greene, J. L., Mills, T., Leiden, Y., Poppy, S., and Winne, C. T. (2000). The global decline of reptiles, déjà vu amphibians: reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change. BioScience 50, 653–666.
The global decline of reptiles, déjà vu amphibians: reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change.Crossref | GoogleScholarGoogle Scholar |

Gillespie, G. R., Roberts, J. D., Hunter, D., Hoskin, C. J., Alford, R. A., Heard, G. W., Hines, H., Lemckert, F., Newell, D., and Scheele, B. C. (2020). Status and priority conservation actions for Australian frog species. Biological Conservation 247, 108543.
Status and priority conservation actions for Australian frog species.Crossref | GoogleScholarGoogle Scholar |

Grant, E. H. C., Miller, D. A. W., and Muths, E. (2020). A synthesis of evidence of drivers of amphibian declines. Herpetologica 76, 101–107.
A synthesis of evidence of drivers of amphibian declines.Crossref | GoogleScholarGoogle Scholar |

Griffiths, R. A., and Pavajeau, L. (2008). Captive breeding, reintroduction, and the conservation of amphibians. Conservation Biology 22, 852–861.
Captive breeding, reintroduction, and the conservation of amphibians.Crossref | GoogleScholarGoogle Scholar | 18616746PubMed |

Harley, D., Menkhorst, P., Quin, B., Anderson, R. P., Tardif, S., Cartwright, K., Murray, N., and Kelly, M. (2018). Twenty-five years of helmeted honeyeater conservation: a government-community partnership poised for recovery success. In ‘Recovering Australian threatened species: a book of hope’. (Eds S. Garnett, P. Latch, D. Lindenmayer, J. Woinarski.) pp. 269–280. (CSIRO Publishing: Melbourne.)

Hayes, T. B., Khoury, V., Narayan, A., Nazir, M., Park, A., Brown, T., Adame, L., Chan, E., Buchholz, D., Stueve, T., and Gallipeau, S. (2010). Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proceedings of the National Academy of Sciences 107, 4612–4617.
Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis).Crossref | GoogleScholarGoogle Scholar |

Heard, G. W., Scroggie, M. P., Ramsey, D. S. L., Clemann, N., Hodgson, J. A., and Thomas, C. D. (2018). Can habitat management mitigate disease impacts on threatened amphibians? Conservation Letters 11, e12375.
Can habitat management mitigate disease impacts on threatened amphibians?Crossref | GoogleScholarGoogle Scholar |

Hemming, V., Burgman, M. A., Hanea, A. M., McBride, M. F., and Wintle, B. C. (2018a). A practical guide to structured expert elicitation using the IDEA protocol. Methods in Ecology and Evolution 9, 169–180.
A practical guide to structured expert elicitation using the IDEA protocol.Crossref | GoogleScholarGoogle Scholar |

Hemming, V., Walshe, T. V., Hanea, A. M., Fidler, F., and Burgman, M. A. (2018b). Eliciting improved quantitative judgements using the IDEA protocol: a case study in natural resource management. PLoS ONE 13, e0198468.
Eliciting improved quantitative judgements using the IDEA protocol: a case study in natural resource management.Crossref | GoogleScholarGoogle Scholar | 29933407PubMed |

Hemming, V., Hanea, A. M., Walshe, T., and Burgman, M. A. (2020). Weighting and aggregating expert ecological judgments. Ecological Applications 30, e02075.
Weighting and aggregating expert ecological judgments.Crossref | GoogleScholarGoogle Scholar | 31971641PubMed |

Hero, J. M., Morrison, C., Gillespie, G., Roberts, J. D., Newell, D., Meyer, E., McDonald, K., Lemckert, F., Mahony, M., Osborne, W., Hines, H., Richards, S., Hoskin, C., Clarke, J., Doak, N., and Shoo, L. (2006). Overview of the conservation status of Australian frogs. Pacific Conservation Biology 12, 313–320.
Overview of the conservation status of Australian frogs.Crossref | GoogleScholarGoogle Scholar |

Hoffmann, E. P., Williams, K., Hipsey, M. R., and Mitchell, N. J. (2021). Drying microclimates threaten persistence of natural and translocated populations of threatened frogs. Biodiversity and Conservation 30, 15–34.
Drying microclimates threaten persistence of natural and translocated populations of threatened frogs.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J., and Puschendorf, R. (2014). The importance of peripheral areas for biodiversity conservation: with particular focus on endangered rainforest frogs of the Wet Tropics and Eungella. Final report for National Environmental Program project 3.3. Reef & Rainforest Research Centre Ltd, Cairns.

Howell, L. G., Frankham, R., Rodger, J. C., Witt, R. R., Clulow, S., Upton, R. M. O., and Clulow, J. (2021). Integrating biobanking minimises inbreeding and produces significant cost benefits for a threatened frog captive breeding programme. Conservation Letters 14, e12776.
Integrating biobanking minimises inbreeding and produces significant cost benefits for a threatened frog captive breeding programme.Crossref | GoogleScholarGoogle Scholar |

IUCN (2020). The IUCN Red List of Threatened Species. Version 2020-2 Available at https://www.iucnredlist.org/resources/summary-statistics#Summary%20Tables [Accessed 10 September 2020].

Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., Guangchun, L., and Wilmshurst, J. M. (2017). Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275.
Biodiversity losses and conservation responses in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 28428393PubMed |

Kanowski, J., Roshier, D., Smith, M. A., and Fleming, A. (2018). Effective conservation of critical weight range mammals: reintroduction projects of the Australian Wildlife Conservancy. In ‘Recovering Australian threatened species: a book of hope’. (Eds S. Garnett, P. Latch, D. Lindenmayer, J. Woinarski.) pp. 269–279. (CSIRO Publishing: Melbourne.)

Kats, L. B., and Ferrer, R. P. (2003). Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Diversity and Distributions 9, 99–110.
Alien predators and amphibian declines: review of two decades of science and the transition to conservation.Crossref | GoogleScholarGoogle Scholar |

Kendall, M. G., and Babinton Smith, B. (1939). The problem of m rankings. The Annals of Mathematical Statistics 10, 275–287.
The problem of m rankings.Crossref | GoogleScholarGoogle Scholar |

Laurance, W. F. (2008). Global warming and amphibian extinctions in eastern Australia. Austral Ecology 33, 1–9.
Global warming and amphibian extinctions in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Laurance, W. F., McDonald, K. R., and Speare, R. (1996). Epidemic disease and the catastrophic decline of Australian rain forest frogs. Conservation Biology 10, 406–413.
Epidemic disease and the catastrophic decline of Australian rain forest frogs.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Woinarski, J. C. Z., Burbidge, A. A., Palmer, R., Ringma, J., Radford, J. Q., Mitchell, N., Bode, M., Wintle, B., Baseler, M., Bentley, J., Copley, P., Dexter, N., Dickman, C. R., Gillespie, G. R., Hill, B., Johnson, C. N., Latch, P., Letnic, M., Manning, A., McCreless, E. E., Menkhorst, P., Morris, K., Moseby, K., Page, M., Pannell, D., and Tuft, K. (2018). Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildlife Research 45, 627–644.
Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators.Crossref | GoogleScholarGoogle Scholar |

Lintermans, M., Geyle, H. M., Beatty, S., Brown, C., Ebner, B. C., Freeman, R., Hammer, M. P., Humphreys, W. F., Kennard, M. J., Kern, P., Martin, K., Morgan, D. L., Raadik, T. A., Unmack, P. J., Wager, R., Woinarski, J. C. Z., and Garnett, S. T. (2020). Big trouble for little fish: identifying Australian freshwater fishes in imminent risk of extinction. Pacific Conservation Biology 26, 365–377.
Big trouble for little fish: identifying Australian freshwater fishes in imminent risk of extinction.Crossref | GoogleScholarGoogle Scholar |

Martin, T. G., Burgman, M. A., Fidler, F., Kuhnert, P. M., Low-Choy, S., McBride, M., and Mengersen, K. (2012). Eliciting expert knowledge in conservation science. Conservation Biology 26, 29–38.
Eliciting expert knowledge in conservation science.Crossref | GoogleScholarGoogle Scholar | 22280323PubMed |

McBride, M. F., Garnett, S. T., Szabo, J. K., Burbidge, A. H., Butchart, S. H. M., Christidis, L., Dutson, G., Ford, H. A., Loyn, R. H., Watson, D. M., and Burgman, M. A. (2012). Structured elicitation of expert judgments for threatened species assessment: a case study on a continental scale using email. Methods in Ecology and Evolution 3, 906–920.
Structured elicitation of expert judgments for threatened species assessment: a case study on a continental scale using email.Crossref | GoogleScholarGoogle Scholar |

McCaffery, R. M., and Maxell, B. A. (2010). Decreased winter severity increases viability of a montane frog population. Proceedings of the National Academy of Sciences 107, 8644–8649.
Decreased winter severity increases viability of a montane frog population.Crossref | GoogleScholarGoogle Scholar |

McDonald, K. R. (1990). Rheobatrachus Liem and Taudactylus Straughan & Lee (Anura: Leptodactylidae) in Eungella National Park, Queensland: distribution and decline. Transaction of the Royal Society of South Australia 114, 187–194.

McFadden, M. S., Gilbert, D., Bradfield, K., Evans, M., Marantelli, G., and Byrne, P. (2018). The role of ex situ amphibian conservation in Australia. In ‘Status of conservation and decline of amphibians: Australia, New Zealand and Pacific Islands’. (Eds H. Heatwole, J. Rowley.) pp. 123–140. (CSIRO Publishing: Melbourne.)

Mellers, B., Stone, E., Murray, T., Minster, A., Rohrbaugh, N., Bishop, M., Chen, E., Baker, J., Hou, Y., Horowitz, M., Ungar, L., and Tetlock, P. (2015). Identifying and cultivating superforecasters as a method of improving probabilistic predictions. Perspectives on Psychological Science 10, 267–281.
Identifying and cultivating superforecasters as a method of improving probabilistic predictions.Crossref | GoogleScholarGoogle Scholar | 25987508PubMed |

Meyer, E. A., Hines, H. B., Clarke, J. M., and Hoskin, C. J. (2020). An update on the status of wet forest stream-dwelling frogs of the Eungella region. Proceedings of the Royal Society of Queensland 125, 97–115.

Montibeller, G., and von Winterfeldt, D. (2015). Cognitive and Motivational Biases in Decision and Risk Analysis. Risk Analysis 35, 1230–1251.
Cognitive and Motivational Biases in Decision and Risk Analysis.Crossref | GoogleScholarGoogle Scholar | 25873355PubMed |

Moseby, K., Copley, P., Paton, D. C., and Read, J. L. (2018). Arid recovery: a successful conservation partnership. In ‘Recovering Australian threatened species: a book of hope’. (Eds S. Garnett, P. Latch, D. Lindenmayer, J. Woinarski.) pp. 259–268. (CSIRO Publishing: Melbourne.)

Murray, K., Retallick, R., McDonald, K. R., Mendez, D., Aplin, K., Kirkpatrick, P., Berger, L., Hunter, D., Hines, H. B., Campbell, R., Pauza, M., Driessen, M., Speare, R., Richards, S. J., Mahony, M., Freeman, A., Phillott, A. D., Hero, J.-M., Kriger, K., Driscoll, D., Felton, A., Puschendorf, R., and Skerratt, L. F. (2010). The distribution and host range of the pandemic disease chytridiomycosis in Australia, spanning surveys from 1956–2007. Ecology 91, 1557–1558.
The distribution and host range of the pandemic disease chytridiomycosis in Australia, spanning surveys from 1956–2007.Crossref | GoogleScholarGoogle Scholar |

Newell, D. (2018). An update on frog declines from the forests of subtropical eastern Australia. In ‘Status of conservation and decline of amphibians: Australia, New Zealand, and Pacific Islands’. (Eds H. Heatwole, J. Rowley.) pp. 29–38. (CSIRO Publishing: Melbourne.)

Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., and Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752.
The biodiversity of species and their rates of extinction, distribution, and protection.Crossref | GoogleScholarGoogle Scholar | 24876501PubMed |

Pinheiro, J., Bates, D., DebRoy, S., and Sarkar, D. (2020). Package ‘nlme’. R package version 3.1-150. Available at https://cran.r-project.org/web/packages/nlme/nlme.pdf

Puschendorf, R., Hoskin, C. J., Cashins, S. D., McDonald, K., Skerratt, L. F., Vanderwal, J., and Alford, R. A. (2011). Environmental refuge from disease-driven amphibian extinction. Conservation Biology 25, 956–964.
Environmental refuge from disease-driven amphibian extinction.Crossref | GoogleScholarGoogle Scholar | 21902719PubMed |

Rodrigues, A., Pilgrim, J., Lamoreux, J., Hoffmann, M., and Brooks, T. (2006). The value of the IUCN Red List for conservation. Trends in Ecology and Evolution 21, 71–76.
The value of the IUCN Red List for conservation.Crossref | GoogleScholarGoogle Scholar | 16701477PubMed |

Scheele, B. C., and Gillespie, G. R. (2018). The extent and adequacy of monitoring for Australian threatened frog species. In ‘Monitoring threatened species and ecological communities’. (Eds S. Legge, D.B. Lindenmayer, N.M. Robinson, B.C. Scheele, D. Southwell, B. Wintle.) pp. 57-68. (CSIRO Publishing: Melbourne.)

Scheele, B. C., Hunter, D. A., Grogan, L. F., Berger, L., Kolby, J. E., McFadden, M. S., Marantelli, G., Skerratt, L. F., and Driscoll, D. A. (2014). Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Conservation Biology 28, 1195–205.
Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians.Crossref | GoogleScholarGoogle Scholar | 24975971PubMed |

Scheele, B. C., Skerratt, L. F., Grogan, L. F., Hunter, D. A., Clemann, N., McFadden, M., Newell, D., Hoskin, C. J., Gillespie, G. R., Heard, G. W., Brannelly, L., Roberts, A. A., and Berger, L. (2017). After the epidemic: ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis. Biological Conservation 206, 37–46.
After the epidemic: ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis.Crossref | GoogleScholarGoogle Scholar |

Scheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., Acevedo, A. A., Burrowes, P. A., Carvalho, T., Catenazzi, A., De la Riva, I., Fisher, M. C., Flechas, S. V., Foster, C. N., Frías-Álvarez, P., Garner, T. W. J., Gratwicke, B., Guayasamin, J. M., Hirschfeld, M., Kolby, J. E., Kosch, T. A., La Marca, E., Lindenmayer, D. B., Lips, K. R., Longo, A. V., Maneyro, R., McDonald, C. A., Mendelson, J., Palacios-Rodriguez, P., Parra-Olea, G., Richards-Zawacki, C. L., Rödel, M.-O., Rovito, S. M., Soto-Azat, C., Toledo, L. F., Voyles, J., Weldon, C., Whitfield, S. M., Wilkinson, M., Zamudio, K. R., and Canessa, S. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. . 363, 1459–1463.
Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity.Crossref | GoogleScholarGoogle Scholar | 30923224PubMed |

Shea, G. M. (2015). From lineages to webs: a history of the Australian Society of Herpetologists. Australian Journal of Zoology 62, 431–447.
From lineages to webs: a history of the Australian Society of Herpetologists.Crossref | GoogleScholarGoogle Scholar |

Shoo, L. P., Olson, D. H., McMenamin, S. K., Murray, K. A., Van Sluys, M., Donnelly, M. A., Stratford, D., Terhivuo, J., Merino-Viteri, A., Herbert, S. M., Bishop, P. J., Corn, P. S., Dovey, L., Griffiths, R. A., Lowe, K., Mahony, M., McCallum, H., Shuker, J. D., Simpkins, C., Skerratt, L. F., Williams, S. E., and Hero, J.-M. (2011). Engineering a future for amphibians under climate change. Journal of Applied Ecology 48, 487–492.
Engineering a future for amphibians under climate change.Crossref | GoogleScholarGoogle Scholar |

Silla, A. J., and Byrne, P. G. (2019). The role of reproductive technologies in amphibian conservation breeding programs. Annual Review of Animal Biosciences 7, 499–519.
The role of reproductive technologies in amphibian conservation breeding programs.Crossref | GoogleScholarGoogle Scholar | 30359086PubMed |

Skerratt, L. F., Berger, L., Clemann, N., Hunter, D. A., Marantelli, G., Newell, D. A., Philips, A., McFadden, M., Hines, H. B., Scheele, B. C., Brannelly, L. A., Speare, R., Versteegen, S., Cashins, S. D., and West, M. (2016). Priorities for management of chytridiomycosis in Australia: saving frogs from extinction. Wildlife Research 43, 105–120.
Priorities for management of chytridiomycosis in Australia: saving frogs from extinction.Crossref | GoogleScholarGoogle Scholar |

Szabo, J. K., Khwaja, N., Garnett, S. T., and Butchart, S. H. M. (2012). Global patterns and drivers of avian extinctions at the species and subspecies level. PloS One 7, e47080–e47080.
Global patterns and drivers of avian extinctions at the species and subspecies level.Crossref | GoogleScholarGoogle Scholar | 23056586PubMed |

Tyler, M. J., and Davies, M. (1985). The gastric brooding frog. In ‘Biology of Australasian frogs and reptiles’. (Eds G. Grigg, R. Shine, H. Ehmann.) pp. 469–470. (Surrey Beatty & Sons: Sydney).

Upton, R., Clulow, S., Mahony, M. J., and Clulow, J. (2018). Generation of a sexually mature individual of the eastern dwarf tree frog, Litoria fallax, from cryopreserved testicular macerates: proof of capacity of cryopreserved sperm derived offspring to complete development. Conservation Physiology 6, coy043.
Generation of a sexually mature individual of the eastern dwarf tree frog, Litoria fallax, from cryopreserved testicular macerates: proof of capacity of cryopreserved sperm derived offspring to complete development.Crossref | GoogleScholarGoogle Scholar | 30151196PubMed |

Warkentin, I. G., Bickford, D., Sodhi, N. S., and Bradshaw, C. J. A. (2009). Eating frogs to extinction. Conservation Biology 23, 1056–1059.
Eating frogs to extinction.Crossref | GoogleScholarGoogle Scholar | 19210303PubMed |

West, M., Todd, C. R., Gillespie, G. R., and McCarthy, M. (2020). Recruitment is key to understanding amphibian’s different population-level responses to chytrid fungus infection. Biological Conservation 241, 108247.
Recruitment is key to understanding amphibian’s different population-level responses to chytrid fungus infection.Crossref | GoogleScholarGoogle Scholar |

Williams, K. J., Dunlop, M., Bustamante, R. H., Murphy, H. T., Ferrier, S., Wise, R. M., Liedloff, A., Skewes, T., Harwood, T. D., Kroon, F., Williams, R. J., Joehnk, K., Crimp, S., Stafford Smith, M., James, C., and Booth, T. (2012). Queensland’s biodiversity under climate change: impacts and adaptation – synthesis report. A report prepared for the Queensland Government, Brisbanse. CSIRO Climate Adaptation Flagship, Canberra.

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: secline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences 112, 4531–4540.
Ongoing unraveling of a continental fauna: secline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Braby, M. F., Burbidge, A. A., Coates, D., Garnett, S. T., Fensham, R. J., Legge, S. M., McKenzie, N. L., Silcock, J. L., and Murphy, B. P. (2019). Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia. Biological Conservation 239, 108261.
Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia.Crossref | GoogleScholarGoogle Scholar |