Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE

Rarity, taxonomy and genetics: the chequered history of Grevillea williamsonii (Proteaceae)

Elizabeth A. James A D , Gillian K. Brown B , Rebecca Jordan C and Daniel J. Ohlsen A
+ Author Affiliations
- Author Affiliations

A Royal Botanic Gardens Victoria, Private Bag 2000, South Yarra, Vic. 3141, Australia.

B Queensland Herbarium, DSITI, Brisbane Botanic Gardens, Mt Coot-tha Road, Toowong, Qld 4069, Australia.

C CSIRO Land and Water, 15 College Rd, Sandy Bay, Tas. 7005, Australia.

D Corresponding author. Email: elizabeth.james@rbg.vic.gov.au

Pacific Conservation Biology 24(3) 329-338 https://doi.org/10.1071/PC17050
Submitted: 29 November 2017  Accepted: 1 April 2018   Published: 4 June 2018

Abstract

Resolving uncertainty surrounding the taxonomic and conservation status of rare plants is of utmost importance to enable effective allocation of the limited resources available for conserving biodiversity. Prioritising threatened taxa that are more appropriately regarded as synonymous with more common species represents a waste of resources. Such a scenario may apply to the Australian entity Grevillea williamsonii and consequently its taxonomic status was investigated using chloroplast DNA sequences and nuclear microsatellite data. Haplotype network and genetic structure analyses showed that G. williamsonii was not genetically distinct from, and should be synonymised with, the variable and morphologically similar but more common G. aquifolium. This study highlights the benefit of undertaking genetic analyses where questionable taxonomic status biases conservation prioritisation and management decisions.

Additional keywords: conservation priorities, genetic lineage, synonymisation, taxonomic uncertainty


References

Ahrens, C. W., Supple, M. A., Aitken, N. C., Cantrill, D. J., Borevitz, J. O., and James, E. A. (2017). Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain. Annals of Botany 119, 1267–1277.
Genomic diversity guides conservation strategies among rare terrestrial orchid species when taxonomy remains uncertain.Crossref | GoogleScholarGoogle Scholar |

Blacket, M. J., Robin, C., Good, R. T., Lee, S. F., and Miller, A. D. (2012). Universal primers for fluorescent labelling of PCR fragments – an efficient and cost-effective approach to genotyping by fluorescence. Molecular Ecology Resources 12, 456–463.
Universal primers for fluorescent labelling of PCR fragments – an efficient and cost-effective approach to genotyping by fluorescence.Crossref | GoogleScholarGoogle Scholar |

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar |

Cropper, S., and Cropper, M. (2000). Grevillea williamsonii (Williamson’s grevillea) Survey, Serra Range, Grampians NP. Technical Document 2000–78: Botanicus Australia Pty Ltd.

Darwin, C. (1859). ‘On the Origin of Species.’ (John Murray: London.)

Degnan, J. H., and Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution 24, 332–340.
Gene tree discordance, phylogenetic inference and the multispecies coalescent.Crossref | GoogleScholarGoogle Scholar |

Downing, T. L. (2012). Investigating genetic and morphological variability in the holly grevillea Grevillea aquifolium (Proteaceae). PhD, University of Melbourne.

Earl, D. A., and von Holdt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359–361.
STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method.Crossref | GoogleScholarGoogle Scholar |

England, P. R., Ayre, D. J., and Whelan, R. J. (1999). Microsatellites in the Australian shrub Grevillea macleayana (Proteaceae). Molecular Ecology 8, 689–690.
Microsatellites in the Australian shrub Grevillea macleayana (Proteaceae).Crossref | GoogleScholarGoogle Scholar |

Ennos, R. A., French, G. C., and Hollingsworth, P. M. (2005). Conserving taxonomic complexity. Trends in Ecology & Evolution 20, 164–168.
Conserving taxonomic complexity.Crossref | GoogleScholarGoogle Scholar |

Ennos, R. A., Fay, M. F., Jones, B., Neaves, L. E., Payne, R., Taylor, I., de Vere, N., and Hollingsworth, P. M. (2012). Process-Based Species Action Plans: an approach to conserve contemporary evolutionary processes that sustain diversity in taxonomically complex groups. Botanical Journal of the Linnean Society 168, 194–203.

EPBC (1999). Environment Protection and Biodiversity Conservation Act 1999. Available at: http://www.deh.gov.au/epbc/about/index.html

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar |

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164, 1567–1587.

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2010). ‘Introduction to Conservation Genetics.’ 2nd edn.. (Cambridge University Press: Cambridge.)

Harnik, P. G., Simpson, C., and Payne, J. L. (2012). Long-term differences in extinction risk among the seven forms of rarity. Proceedings. Biological Sciences 279, 4969–4976.
Long-term differences in extinction risk among the seven forms of rarity.Crossref | GoogleScholarGoogle Scholar |

Hey, J., Waples, R. S., Arnold, M. L., Butlin, R. K., and Harrison, R. G. (2003). Understanding and confronting species uncertainty in biology and conservation. Trends in Ecology & Evolution 18, 597–603.
Understanding and confronting species uncertainty in biology and conservation.Crossref | GoogleScholarGoogle Scholar |

Hoebee, S. E. (2011). Development and cross-species amplification of microsatellite markers from the endangered wee jasper grevillea (Grevillea iaspicula, Proteaceae). Muelleria 29, 93–96.

Hoffmann, A., Griffin, P., Dillon, S., Catullo, R., Rane, R., Byrne, M., Jordan, R., Oakeshott, J., Weeks, A., Joseph, L., Lockhart, P., Borevitz, J., and Sgrò, C. (2015). A framework for incorporating evolutionary genomics into biodiversity conservation and management. Climate Change Responses 2, 1.
A framework for incorporating evolutionary genomics into biodiversity conservation and management.Crossref | GoogleScholarGoogle Scholar |

Holmes, G. D., Downing, T. L., James, E. A., Blacket, M. J., Hoffmann, A. A., and Bayly, M. J. (2014). Phylogeny of the holly grevilleas based on nuclear ribosomal and chloroplast DNA. Australian Systematic Botany 27, 56–77.
Phylogeny of the holly grevilleas based on nuclear ribosomal and chloroplast DNA.Crossref | GoogleScholarGoogle Scholar |

Hopper, S. D. (2014). Taxonomic synonymising as a threatening process in conservation. Australasian Systematic Botany Society Newsletter 159, 13.

IUCN (2010). Plants under pressure – a global assessment.

Jackson, H. D., Steane, D. A., Potts, B. M., and Vaillancourt, R. E. (1999). Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae). Molecular Ecology 8, 739–751.
Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Jakobsson, M., and Rosenberg, N. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806.
CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure.Crossref | GoogleScholarGoogle Scholar |

James, E. A. (2000). Implications of reproductive biology and morphology on the conservation of Grevillea williamsonii (Proteaceae). Final Report to the Australian Flora Foundation. Available at: http://www.aff.org.au/AFF3_Res_repts.htm#G_50

James, E. A. (2017). A genetic approach to the conservation of holly leaf grevilleas (Proteaceae). PhD Thesis, The University of Melbourne.

James, E. A., and McDougall, K. L. (2014). Spatial genetic structure reflects extensive clonality, low genotypic diversity and habitat fragmentation in Grevillea renwickiana (Proteaceae), a rare, sterile shrub from south-eastern Australia. Annals of Botany 114, 413–423.
Spatial genetic structure reflects extensive clonality, low genotypic diversity and habitat fragmentation in Grevillea renwickiana (Proteaceae), a rare, sterile shrub from south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

James, E. A., Brown, G. K., Citroen, R., and Blacket, M. J. (2012). Microsatellite marker development for two species of holly-leafed Grevillea and cross-species amplification in the Aspleniifolia/Hookeriana subgroup (Proteaceae). Conservation Genetics Resources 4, 137–140.
Microsatellite marker development for two species of holly-leafed Grevillea and cross-species amplification in the Aspleniifolia/Hookeriana subgroup (Proteaceae).Crossref | GoogleScholarGoogle Scholar |

James, E. A., Brown, G. K., Jordan, R., and Griffin, P. C. (2017). Assessing the genetic legacy of a rare, clonal Australian shrub Grevillea infecunda (Proteaceae). Folia Geobotanica 52, 387–400.
Assessing the genetic legacy of a rare, clonal Australian shrub Grevillea infecunda (Proteaceae).Crossref | GoogleScholarGoogle Scholar |

Kimpton, S. K., James, E. A., and Drinnan, A. N. (2002). Reproductive biology and genetic marker diversity in Grevillea infecunda (Proteaceae), a rare plant with no known seed production. Australian Systematic Botany 15, 485–492.
Reproductive biology and genetic marker diversity in Grevillea infecunda (Proteaceae), a rare plant with no known seed production.Crossref | GoogleScholarGoogle Scholar |

Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., and Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 15, 1179–1191.
Clumpak: a program for identifying clustering modes and packaging population structure inferences across K.Crossref | GoogleScholarGoogle Scholar |

Krauss, S. L., Dixon, B., and Dixon, K. W. (2002). Rapid genetic decline in a translocated population of the endangered plant Grevillea scapigera. Conservation Biology 16, 986–994.
Rapid genetic decline in a translocated population of the endangered plant Grevillea scapigera.Crossref | GoogleScholarGoogle Scholar |

Leavitt, S. D., Divakar, P. K., Crespo, A., and Lumbsch, H. T. (2016). A matter of time – understanding the limits of the power of molecular data for delimiting species boundaries. Herzogia 29, 479–492.
A matter of time – understanding the limits of the power of molecular data for delimiting species boundaries.Crossref | GoogleScholarGoogle Scholar |

Mace, G. M. (2004). The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 711–719.
The role of taxonomy in species conservation.Crossref | GoogleScholarGoogle Scholar |

Maddison, W. P., and Knowles, L. L. (2006). Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55, 21–30.
Inferring phylogeny despite incomplete lineage sorting.Crossref | GoogleScholarGoogle Scholar |

Makinson, R. O. (1996). Grevillea. In ‘Flora of Victoria. Vol. 3’. (Eds N. G. Walsh, and T. J. Entwisle.) pp. 845–870. (Inkata Press: Melbourne.)

Makinson, R. O. (2000). ‘Grevillea (Vol. 17A).’ (ABRS/CSIRO: Melbourne.)

Marriott, N. (1993). Grevillea williamsonii FVM rediscovered. Victorian Naturalist 110, 163–164.

Marriott, N. (2006). Grevillea williamsonii – endangered species or merely a mutant? Association for Societies Growing Australian Plants, Grevillea Study Group Newsletter 73, 6–7.

Mast, A. R., Olde, P. M., Jones, E. H., Kubes, A., Miller, E. T., and Weston, P. H. (2015). Paraphyly changes understanding of timing and tempo of diversification of subtribe Hakeinae (Proteaceae), a giant Australian plant radiation. American Journal of Botany 102, 1634–1646.
Paraphyly changes understanding of timing and tempo of diversification of subtribe Hakeinae (Proteaceae), a giant Australian plant radiation.Crossref | GoogleScholarGoogle Scholar |

McKinnon, G. E., Steane, D. A., Potts, B. M., and Vaillancourt, R. E. (1999). Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae). American Journal of Botany 86, 1038–1046.
Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

McKinnon, G. E., Vaillancourt, R. E., Tilyard, P. A., and Potts, B. M. (2001). Maternal inheritance of the chloroplast genome in Eucalyptus globulus and interspecific hybrids. Genome 44, 831–835.
Maternal inheritance of the chloroplast genome in Eucalyptus globulus and interspecific hybrids.Crossref | GoogleScholarGoogle Scholar |

McKinnon, G. E., Jordan, G. J., Vaillancourt, R. E., Steane, D. A., and Potts, B. M. (2004). Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 275–284.
Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts.Crossref | GoogleScholarGoogle Scholar |

Meek, M. H., Wells, C., Tomalty, K. M., Ashander, J., Cole, E. M., Gille, D. A., Putman, B. J., Rose, J. P., Savoca, M. S., Yamane, L., Hull, J. M., Rogers, D. L., Rosenblum, E. B., Shogren, J. F., Swaisgood, R. R., and May, B. (2015). Fear of failure in conservation: the problem and potential solutions to aid conservation of extremely small populations. Biological Conservation 184, 209–217.
Fear of failure in conservation: the problem and potential solutions to aid conservation of extremely small populations.Crossref | GoogleScholarGoogle Scholar |

Miller, B. P. (1998). Grevillea williamsonii survey plan report. Unpublished report prepared for Parks Victoria.

Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
Defining ‘Evolutionarily Significant Units’ for conservation.Crossref | GoogleScholarGoogle Scholar |

Moritz, C., and Potter, S. (2013). The importance of an evolutionary perspective in conservation policy planning. Molecular Ecology 22, 5969–5971.
The importance of an evolutionary perspective in conservation policy planning.Crossref | GoogleScholarGoogle Scholar |

Mueller, F. (1893). Grevillea williamsonii. Victorian Naturalist 10, 129.

Olde, P., and Marriott, N. (1995a). ‘The Grevillea Book. Vol. 2.’ (Kangaroo Press Ltd: Sydney.)

Olde, P., and Marriott, N. (1995b). ‘The Grevillea Book’ Vol. 3.’ (Kangaroo Press Ltd: Sydney.)

Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537–2539.
GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update.Crossref | GoogleScholarGoogle Scholar |

Pleines, T., Jakob, S. S., and Blattner, F. R. (2009). Application of non-coding DNA regions in intraspecific analyses. Plant Systematics and Evolution 282, 281–294.
Application of non-coding DNA regions in intraspecific analyses.Crossref | GoogleScholarGoogle Scholar |

Pollock, L. J. S. (2011). The intersection of ecology and evolution: a case study of Eucalytpus in the Grampians Ranges, Australia. PhD Thesis, The University of Melbourne.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

Pritchard, J., Wen, X., and Falush, D. (2010). ‘Documentation for STRUCTURE Software: Version 2.3.’

Rosenberg, N. A. (2004). DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4, 137–138.
DISTRUCT: a program for the graphical display of population structure.Crossref | GoogleScholarGoogle Scholar |

Ryder, O. A. (1986). Species conservation and systematics: the dilemma of subspecies. Trends in Ecology & Evolution 1, 9–10.
Species conservation and systematics: the dilemma of subspecies.Crossref | GoogleScholarGoogle Scholar |

Sgrò, C. M., Lowe, A. J., and Hoffmann, A. A. (2011). Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4, 326–337.
Building evolutionary resilience for conserving biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar |

Tsitrone, A., Kirkpatrick, M., and Levin, D. A. (2003). A model for chloroplast capture. Evolution 57, 1776–1782.
A model for chloroplast capture.Crossref | GoogleScholarGoogle Scholar |

VicFlora (2017). Flora of Victoria. Royal Botanic Gardens Victoria. Available at: http://vicflora.rbg.vic.gov.au [accessed 13 November 2017].

Walsh, N. G., and Entwisle, T. J. (1996). ‘Flora of Victoria. Vol 3: Dicotyledons: Winteraceae to Myrtaceae.’ (Inkata Press: Melbourne.)

Walsh, N. G., and Stajsic, V. (2007). ‘A Census of the Vascular Plants in Victoria.’ (Royal Botanic Gardens Melbourne: Melbourne.).

Willis, J. H. (1972). ‘A Handbook to Plants in Victoria: Volume II. Dicotyledons.’ (Melbourne University Press: Melbourne.)