Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Rise (and demise?) of subspecies in the Galah (Eolophus roseicapilla), a widespread and abundant Australian cockatoo

Daniel Engelhard A , Leo Joseph B E , Alicia Toon C , Lynn Pedler D and Thomas Wilke A
+ Author Affiliations
- Author Affiliations

A Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.

B Australian National Wildlife Collection, CSIRO National Facilities and Collections, GPO Box 1700, Canberra, ACT 2601, Australia.

C School of Biological Sciences, University of Queensland, Brisbane, Qld 4072, Australia.

D PO Box 58, Koolunga, SA 5464, Australia.

E Corresponding author. Email: Leo.Joseph@csiro.au

Emu 115(4) 289-301 https://doi.org/10.1071/MU15018
Submitted: 12 February 2015  Accepted: 4 June 2015   Published: 1 September 2015

Abstract

The Galah (Eolophus roseicapilla) is a widespread Australian bird. Its geographical variation and subspecies remain poorly understood. We sampled 192 specimens from across the entire range of the species to assess its phylogeographical structure using the mitochondrially encoded NADH dehydrogenase 2 (MT-ND2) gene. A subset of specimens was examined for nuclear DNA diversity using the Amplified Fragment Length Polymorphism (AFLP) method. Weakly defined structure was evident in the mitochondrial DNA (mtDNA) data, which suggested three geographically defined haplogroups that broadly coincide with the three conventionally recognised subspecies: E. r. roseicapilla – western haplogroup; E. r. albiceps – eastern haplogroup; and E. r. kuhli – northern haplogroup. The three haplogroups all overlap and intersect broadly across the centre of the Australian continent. Geographical expansions of each haplogroup appear to have occurred before and after the Last Glacial Maximum (~20000 years ago), the species itself probably having undergone an earlier expansion at c. 60000 years ago. The preliminary nuclear AFLP data suggest very little structure though they likely track more recent processes of gene flow and population admixture. Expansion of the species since European settlement represents another, later expansion uncoupled from what is tracked in the mtDNA data. Future quantitative analyses of phenotypic variation will enhance the precision of how geographical variation in all datasets in this species should be interpreted.

Additional keywords: expansion, Last Glacial Maximum (LGM), MT-ND2.


References

Arndt, T. (1999). ‘Lexicon of Parrots.’ (Arndt-Verlag: Bretten, Germany.)

Bensch, S., and Akesson, M. (2005). Ten years of AFLP in ecology and evolution: why so few animals? Molecular Ecology 14, 2899–2914.
Ten years of AFLP in ecology and evolution: why so few animals?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltLnO&md5=b657622476d732d398d22898e40298fcCAS | 16101761PubMed |

Bonin, A., Bellemain, E., Bronken Eidesen, P., Pompanon, F., Brochmann, C., and Taberlet, P. (2004). How to track and assess genotyping errors in population genetics studies. Molecular Ecology 13, 3261–3273.
How to track and assess genotyping errors in population genetics studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWkurvP&md5=79fcb622e9cf9780772033901ffb2dc8CAS | 15487987PubMed |

Bowman, D. M. J. S., Brown, G. K., Braby, M. F., Brown, J. R., Cook, L. G., Crisp, M. D., Ford, F., Haberle, S., Hughes, J., Isagi, Y., Joseph, L., McBride, J., Nelson, G., and Ladiges, P. Y. (2010). Biogeography of the Australian monsoon tropics. Journal of Biogeography 37, 201–216.
Biogeography of the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar |

Burridge, C. P., Brown, W. E., Wadley, J., Nankervis, D. L., Olivier, L., Gardner, M. G., Hull, C., Barbour, R., and Austin, J. J. (2013). Did postglacial sea-level changes initiate the evolutionary divergence of a Tasmanian endemic raptor from its mainland relative? Proceedings of the Royal Society B: Biological Sciences 280, 20132448.
Did postglacial sea-level changes initiate the evolutionary divergence of a Tasmanian endemic raptor from its mainland relative?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7htlehtw%3D%3D&md5=e776c45910f6887b0654786f609a8342CAS | 24174114PubMed |

Byrne, M., Yeates, D., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K. H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=0a70f013c6a0c859f932d75cb83c0680CAS | 18761619PubMed |

Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D., Aplin, K., Cantrill, D. J., Cook, L. G., Crisp, M. D., Keogh, S., Melville, J., Moritz, C., Porch, N., Sniderman, J. M. K., Sunnucks, P., and Weston, P. H. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |

Campbell, D., Duchesne, P., and Bernatchez, L. (2003). AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Molecular Ecology 12, 1979–1991.
AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFChsbw%3D&md5=53e7236164d466c59b8affa1baeac657CAS | 12803646PubMed |

Chan, Y., Schanzenbach, D., and Hickerson, M. (2014). Detecting concerted demographic response across community assemblages using hierarchical approximate Bayesian computation. Molecular Biology and Evolution 31, 2501–2515.
Detecting concerted demographic response across community assemblages using hierarchical approximate Bayesian computation.Crossref | GoogleScholarGoogle Scholar | 24925925PubMed |

Chenery, A. (1902). List of birds observed during trip from Port Augusta (S.A.) to Yardea Telegraph Station, Gawler Ranges, in August, 1902. Emu 2, 167–168.
List of birds observed during trip from Port Augusta (S.A.) to Yardea Telegraph Station, Gawler Ranges, in August, 1902.Crossref | GoogleScholarGoogle Scholar |

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=f7a4462ffe48a9ce6b5366725bae3e86CAS | 11050560PubMed |

David, N., and Gosselin, M. (2002). Gender agreement of avian species names. Bulletin of the British Ornithologists’ Club 122, 14–49.

Department of Environment Australia (2012). Revision of the Interim Biogeographic Regionalisation for Australia (IBRA) and development of version 7. National Reserves System. Available at: http://www.environment.gov.au/system/files/pages/5b3d2d31-2355-4b60-820c-e370572b2520/files/bioregions-new.pdf [Verified 30 July 2015].

Dhami, K. K., Joseph, L., Roshier, D. A., Heinsohn, R., and Peters, J. L. (2013). Multilocus phylogeography of Australian teals (Anas spp.): a case study of the relationship between vagility and genetic structure. Journal of Avian Biology 44, 169–178.
Multilocus phylogeography of Australian teals (Anas spp.): a case study of the relationship between vagility and genetic structure.Crossref | GoogleScholarGoogle Scholar |

Dolman, G., and Joseph, L. (2012). A species assemblage approach to comparative phylogeography of birds in southern Australia. Ecology and Evolution 2, 354–369.
A species assemblage approach to comparative phylogeography of birds in southern Australia.Crossref | GoogleScholarGoogle Scholar | 22423329PubMed |

Dolman, G., and Joseph, L. (2015). Evolutionary history of birds across southern Australia: structure, history and taxonomic implications of mitochondrial DNA diversity in an ecologically diverse suite of species. Emu 115, 35–48.
Evolutionary history of birds across southern Australia: structure, history and taxonomic implications of mitochondrial DNA diversity in an ecologically diverse suite of species.Crossref | GoogleScholarGoogle Scholar |

Earl, D. A., and von Holdt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359–361.
STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., Potter, S., and Cooper, S. J. B. (2012). Biogeographic barriers in north-western Australia: an overview and standardization of nomenclature. Australian Journal of Zoology 59, 270–272.
Biogeographic barriers in north-western Australia: an overview and standardization of nomenclature.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., Potter, S., Johnson, C. N., and Ritchie, E. G. (2014). Differing impact of a major biogeographic barrier on genetic structure in two large kangaroos from the monsoon tropics of Northern Australia. Ecology and Evolution 4, 554–567.
Differing impact of a major biogeographic barrier on genetic structure in two large kangaroos from the monsoon tropics of Northern Australia.Crossref | GoogleScholarGoogle Scholar |

Engelhard, D. (2010). Phylogeography of the Australian Galah Eolophus roseicapilla (Vieillot, 1817). Master of Science Thesis, Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität, Giessen, Germany.

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=f7fa449787db685923e407b00a24cb4cCAS | 15969739PubMed |

Excoffier, L. (2004). Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Molecular Ecology 13, 853–864.
Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFKnsL4%3D&md5=a943100d97679cfbc398a00dc9c383c7CAS | 15012760PubMed |

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=ed142530bee91deedcae18152d11d961CAS |

Falush, D., Stephens, M., and Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.
| 1:CAS:528:DC%2BD3sXnvF2ntrk%3D&md5=7037856c4f213e5156077ef237ea9104CAS | 12930761PubMed |

Fink, S., Fischer, M. C., Excoffier, L., and Heckel, G. (2010). Genomic scans support repetitive continental colonization events during the rapid radiation of voles (Rodentia:Microtus): the utility of AFLPs versus mitochondrial and nuclear sequence markers. Systematic Biology 59, 548–572.
Genomic scans support repetitive continental colonization events during the rapid radiation of voles (Rodentia:Microtus): the utility of AFLPs versus mitochondrial and nuclear sequence markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Oqtb7E&md5=60b2683a7336ddc3f5fc3ee5ca503431CAS | 20834011PubMed |

Ford, J. R. (1987). Hybrid zones in Australian birds. Emu 87, 158–178.
Hybrid zones in Australian birds.Crossref | GoogleScholarGoogle Scholar |

Forshaw, J. M. (2002). ‘Australian Parrots.’ 3rd edn. Illus. W. T. Cooper. (Robina Press: Robina, Qld.)

Fu, Y.-X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.
| 1:STN:280:DyaK2svns1egtQ%3D%3D&md5=621674828ba55e1d997d6c97bf08b3daCAS | 9335623PubMed |

Gammage, W. (2009). Galahs. Australian Historical Studies 40, 275–293.
Galahs.Crossref | GoogleScholarGoogle Scholar |

Hall, B. P. (Ed.) (1974). ‘Birds of the Harold Hall Australian Expeditions 1962–1970.’ (Trustees of the British Museum (Natural History): London.)

Hauswald, A.-H., Remais, J., Xiao, N., Davis, G. M., Lu, D., Bale, M. J., and Wilke, T. (2011). Stirred, not shaken: genetic structure of the intermediate snail host Oncomelania hupensis robertsoni in an historically endemic schistosomiasis area. Parasites & Vectors 4, 206.
Stirred, not shaken: genetic structure of the intermediate snail host Oncomelania hupensis robertsoni in an historically endemic schistosomiasis area.Crossref | GoogleScholarGoogle Scholar |

Higgins, P. J. (Ed.) (1999). ‘Handbook of Australian, New Zealand and Antarctic Birds. Vol. 4: Parrots to Dollarbird.’ (Oxford University Press: Melbourne.)

Huson, D. H., and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23, 254–267.
| 1:CAS:528:DC%2BD28XntValsw%3D%3D&md5=645964c8640396337c14860c5a397558CAS | 16221896PubMed |

Jakobsson, M., and Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806.
CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1ahtbs%3D&md5=d998d780ed255f295c32d5a197314521CAS | 17485429PubMed |

Jennings, W. B., and Edwards, S. V. (2005). Speciational history of Australian grass finches (Poephila) inferred from thirty gene trees. Evolution 59, 2033–2047.
| 1:CAS:528:DC%2BD2MXhtFGiurnM&md5=f3a2484d17d20aec1a8b21f44316ef68CAS | 16261740PubMed |

Johnstone, R. E. (2001). Checklist of the birds of Western Australia. Records of the Western Australian Museum 63, 75–90.

Johnstone, R. E., and Storr, G. M. (1998). ‘Handbook of Western Australian Birds. Vol. 1. Non-Passerines (Emu to Dollarbird).’ (Western Australian Museum: Perth.)

Joseph, L., and Omland, K. (2009). Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds. Emu 109, 1–23.
Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds.Crossref | GoogleScholarGoogle Scholar |

Joseph, L., and Wilke, T. (2007). Lack of phylogeographical structure in three widespread Australian birds reinforces emerging challenges in Australian historical biogeography. Journal of Biogeography 34, 612–624.
Lack of phylogeographical structure in three widespread Australian birds reinforces emerging challenges in Australian historical biogeography.Crossref | GoogleScholarGoogle Scholar |

Kearns, A., Joseph, L., and Cook, L. (2010). The impact of Pleistocene changes of climate and landscape on Australian birds: a test using the Pied Butcherbird (Cracticus nigrogularis). Emu 110, 285–295.
The impact of Pleistocene changes of climate and landscape on Australian birds: a test using the Pied Butcherbird (Cracticus nigrogularis).Crossref | GoogleScholarGoogle Scholar |

Kearns, A., Joseph, L., Toon, A., and Cook, L. (2014). Australia’s arid-adapted butcherbirds experienced range expansions during Pleistocene glacial maxima. Nature Communications 5, 3994.
Australia’s arid-adapted butcherbirds experienced range expansions during Pleistocene glacial maxima.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksVChs7s%3D&md5=c505338037933644dd0363301f35e489CAS | 24876071PubMed |

Lee, J. Y., and Edwards, S. V. (2008). Divergence across Australia’s Carpentarian Barrier: statistical phylogeography of the Red-backed Fairy Wren (Malurus melanocephalus). Evolution 62, 3117–3134.
Divergence across Australia’s Carpentarian Barrier: statistical phylogeography of the Red-backed Fairy Wren (Malurus melanocephalus).Crossref | GoogleScholarGoogle Scholar | 19087188PubMed |

Lerner, H. R. L., Meyer, M., James, H. F., Hofreiter, M., and Fleischer, R. C. (2011). Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers. Current Biology 21, 1838–1844.
Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKmurnN&md5=87a4618e35d844d0ad68c5eddf8cdd82CAS |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=e0f03fd95772aa99ff025c5636a92150CAS | 19346325PubMed |

Meudt, H. M., and Clarke, A. C. (2007). Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends in Plant Science 12, 106–117.
Almost forgotten or latest practice? AFLP applications, analyses and advances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVShsbY%3D&md5=b8144788896fe0d6acb52bfe3996e27fCAS | 17303467PubMed |

Pavlova, A., Amos, J. N., Joseph, L., Loynes, K., Austin, J., Keogh, J. S., Stone, G. N., Nicholls, J. A., and Sunnucks, P. (2013). Perched at the mito-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird. Evolution 67, 3412–3428.
Perched at the mito-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOisbrP&md5=45e4d642225624c5dde7d1b8baf716dfCAS | 24299397PubMed |

Pepper, M., and Keogh, J. S. (2014). Biogeography of the Kimberley, Western Australia: a review of landscape evolution and biotic response in an ancient refugium. Journal of Biogeography 41, 1443–1455.
Biogeography of the Kimberley, Western Australia: a review of landscape evolution and biotic response in an ancient refugium.Crossref | GoogleScholarGoogle Scholar |

Pepper, M., Doughty, P., and Keogh, J. S. (2013). Geodiversity and endemism in the iconic Australian Pilbara region: a review of landscape evolution and biotic response in an ancient refugium. Journal of Biogeography 40, 1225–1239.
Geodiversity and endemism in the iconic Australian Pilbara region: a review of landscape evolution and biotic response in an ancient refugium.Crossref | GoogleScholarGoogle Scholar |

Posada, D., and Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution 16, 37–45.
Intraspecific gene genealogies: trees grafting into networks.Crossref | GoogleScholarGoogle Scholar |

Potter, S., Eldridge, M. D. B., Taggart, D. A., and Cooper, S. J. B. (2012). Multiple biogeographic barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies. Molecular Ecology 21, 2254–2269.
Multiple biogeographic barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies.Crossref | GoogleScholarGoogle Scholar | 22417115PubMed |

Pritchard, J., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=6884cd003ac4e3e93a1a262ad70fc53dCAS | 10835412PubMed |

R Core Team (2015). ‘R: A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.) Available at http://www.R-project.org [Verified 30 July 2015].

Rix, M. G., Edwards, D. L., Byrne, M., Harvey, M. S., Joseph, L., and Roberts, J. D. (2015). Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews 90, 762–793.
Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Rogers, A. R., and Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9, 552–569.
| 1:STN:280:DyaK383mtFeitA%3D%3D&md5=4ddb2032afe03cda33542dad47b2c020CAS | 1316531PubMed |

Rollins, L. A., Svedin, N., Pryke, S. R., and Griffith, S. C. (2012). The role of the Ord Arid Intrusion in the historical and contemporary genetic division of Long-tailed Finch subspecies in northern Australia. Ecology and Evolution 2, 1208–1219.
The role of the Ord Arid Intrusion in the historical and contemporary genetic division of Long-tailed Finch subspecies in northern Australia.Crossref | GoogleScholarGoogle Scholar | 22833795PubMed |

Rosenberg, N. A. (2004). Distruct: a program for the graphical display of population structure. Molecular Ecology Notes 4, 137–138.
Distruct: a program for the graphical display of population structure.Crossref | GoogleScholarGoogle Scholar |

Rowley, I. C. R. (1990). ‘The Galah.’ (Surrey Beatty: Sydney.)

Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=44981e59ead772e0a04c9fa6dfcbc273CAS | 3447015PubMed |

Schneider, S., and Excoffier, L. (1999). Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152, 1079–1089.
| 1:STN:280:DyaK1MzhvVynsA%3D%3D&md5=d6ccc67acd033f40500d067d4ae845c7CAS | 10388826PubMed |

Schodde, R. (1982). Origin, adaptation and evolution of birds in arid Australia. In ‘Evolution of the Flora and Fauna of Arid Australia’. (Eds W. R. Barker and P. J. M. Greenslade.) pp. 191–224. (Peacock Publications: Adelaide.)

Schodde, R. (1988). New subspecies of Australian birds. Canberra Bird Notes 13, 119–122.

Schodde, R. (1997). Cacatuidae. In ‘Zoological Catalogue of Australia. Vol. 37.2: Aves (Columbidae to Coraciidae)’. (Eds W. W. K. Houston and A. Wells.) pp. 64–108. (CSIRO Publishing: Melbourne.)

Schodde, R. (2006). Australia’s bird fauna today – origins and evolutionary development. In ‘Evolution and Biogeography of Australasian Vertebrates’. (Eds J. R. Merrick, M. Archer, G. M. Hickey and M. S. Y. Lee.) pp. 413–458. (Auscipub: Oatlands, NSW.)

Schodde, R., and Mason, I. (1999). ‘Directory of Australian Birds: Passerines.’ (CSIRO Publishing: Melbourne.)

Schultheiß, R., Jørgensen, A., Wilke, T., and Albrecht, C. (2011). The birth of an endemic species flock: demographic history of the Belamya group (Gastropoda, Viviparidae) in Lake Malawi. Biological Journal of the Linnean Society 102, 130–143.
The birth of an endemic species flock: demographic history of the Belamya group (Gastropoda, Viviparidae) in Lake Malawi.Crossref | GoogleScholarGoogle Scholar |

Smith, B. T., and Klicka, J. (2010). The profound influence of the Late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography 33, 333–342.

Smith, B. T., Ribas, C., Whitney, B. M., Hernandez-Banos, B. E., and Klicka, J. (2013). Identifying biases at different spatial and temporal scales of diversification: a case study in the Neotropical parrotlet genus Forpus. Molecular Ecology 22, 483–494.
Identifying biases at different spatial and temporal scales of diversification: a case study in the Neotropical parrotlet genus Forpus.Crossref | GoogleScholarGoogle Scholar | 23190339PubMed |

Sorenson, M. D., Ast, J. C., Dimcheff, D. E., Yuri, T., and Mindell, D. P. (1999). Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution 12, 105–114.
| 1:CAS:528:DyaK1MXjvFWrsLk%3D&md5=ee2f6ae03fced229a7762dbb0de2d292CAS | 10381314PubMed |

Tajima, F. (1989). The effect of change in population size on DNA polymorphism. Genetics 125, 597–601.

Toon, A., Mather, P. B., Baker, A. M., Durrant, K. L., and Hughes, J. M. (2007). Pleistocene refugia in an arid landscape: analysis of a widely distributed Australian passerine. Molecular Ecology 16, 2525–2541.
Pleistocene refugia in an arid landscape: analysis of a widely distributed Australian passerine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Whs7w%3D&md5=189e083573b48c1d160a128f935efffeCAS | 17561911PubMed |

Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T. V. D., Hornes, M., Frijters, A., Pot, J., Peleman, J., and Kuiper, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407–4414.
AFLP: a new technique for DNA fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslensbo%3D&md5=fe4695abfeb9e530221ff31db3646e94CAS | 7501463PubMed |

White, S. A. (1913). Field ornithology in South Australia. The Gawler Ranges. Emu 13, 16–32.
Field ornithology in South Australia. The Gawler Ranges.Crossref | GoogleScholarGoogle Scholar |

White, N. E., Phillips, M. J., Gilbert, T. P., Alfaro-Núñez, A., Willerslev, E., Mawson, P. R., Spencer, P. B. S., and Bunce, M. (2011). The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae). Molecular Phylogenetics and Evolution 59, 615–622.
The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae).Crossref | GoogleScholarGoogle Scholar | 21419232PubMed |

Wilke, T., Schultheiß, R., Albrecht, C., Bornmann, N., Trajanovski, S., and Kevrekidis, T. (2010). Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes. Biogeosciences 7, 3051–3065.
Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes.Crossref | GoogleScholarGoogle Scholar |