Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

How does nest box temperature affect nestling growth rate and breeding success in a parrot?

Eliza R. Larson A B , Justin R. Eastwood A , Katherine L. Buchanan A , Andrew T. D. Bennett A and Mathew L. Berg A
+ Author Affiliations
- Author Affiliations

A Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Locked Bag 20000, Geelong, Vic. 3220, Australia.

B Corresponding author. Email: elarson@deakin.edu.au

Emu 115(3) 247-255 https://doi.org/10.1071/MU14081
Submitted: 18 September 2013  Accepted: 6 March 2015   Published: 19 May 2015

Abstract

Climate change is predicted to affect many species by reducing range, habitat suitability and breeding success. Cavity-nesting species, already threatened by deforestation and declining natural hollows, may be particularly at risk because they are limited in nest-site location, and climatic alterations may further reduce usability of natural cavities. It is therefore essential to determine how cavity-users may be affected. We recorded internal nest box temperatures and modelled the relationships of four temperature parameters (relating to mean temperature, variability in temperature, low temperature extremes and high temperature extremes) with breeding success and nestling growth in an Australian cavity-nesting parrot, the Crimson Rosella (Platycercus elegans). We found that less extreme low temperatures resulted in heavier nestlings; however, higher mean temperatures tended to result in lighter nestlings. Greater temperature variability tended to reduce fledging success; however, no temperature variables had a clear effect on clutch size or hatching success. Our findings indicate that there may be a complex relationship between nestling growth and temperature, and although less extreme cold temperatures may benefit nestlings, continued increases in mean temperature and variability may have negative consequences.


References

Amat, J. A., and Masero, J. A. (2004). How Kentish Plovers, Charadrius alexandrinus, cope with heat stress during incubation. Behavioral Ecology and Sociobiology 56, 26–33.
How Kentish Plovers, Charadrius alexandrinus, cope with heat stress during incubation.Crossref | GoogleScholarGoogle Scholar |

Ardia, D. R., Perez, J. H., and Clotfelter, E. D. (2006). Nest box orientation affects internal temperature and nest site selection by Tree Swallows. Journal of Field Ornithology 77, 339–344.
Nest box orientation affects internal temperature and nest site selection by Tree Swallows.Crossref | GoogleScholarGoogle Scholar |

Ardia, D. R., Perez, J. H., and Clotfelter, E. D. (2010). Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling Tree Swallows. Proceedings of the Royal Society B: Biological Sciences 277, 1881–1888.
Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling Tree Swallows.Crossref | GoogleScholarGoogle Scholar | 20147326PubMed |

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters 15, 365–377.
Impacts of climate change on the future of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Berg, M. L., and Bennett, A. T. D. (2010). The evolution of plumage colouration in parrots: a review. Emu 110, 10–20.
The evolution of plumage colouration in parrots: a review.Crossref | GoogleScholarGoogle Scholar |

Beyer, G. L., and Goldingay, R. L. (2006). The value of nest boxes in the research and management of Australian hollow-using arboreal marsupials. Wildlife Research 33, 161–174.
The value of nest boxes in the research and management of Australian hollow-using arboreal marsupials.Crossref | GoogleScholarGoogle Scholar |

Brewster, C. L., Sikes, R. S., and Gifford, M. E. (2013). Quantifying the cost of thermoregulation: thermal and energetic constraints on growth rates in hatchling lizards. Functional Ecology 27, 490–497.
Quantifying the cost of thermoregulation: thermal and energetic constraints on growth rates in hatchling lizards.Crossref | GoogleScholarGoogle Scholar |

Brittingham, M. C., and Williams, L. M. (2000). Bat boxes as alternative roosts for displaced bat maternity colonies. Wildlife Society Bulletin 28, 197–207.

Brown, C. R., and Brown, M. B. (1999). Fitness components associated with clutch size in Cliff Swallows. The Auk 116, 467–486.
Fitness components associated with clutch size in Cliff Swallows.Crossref | GoogleScholarGoogle Scholar |

Bull, E. L. (2003). Use of nest boxes by Vaux’s Swifts. Journal of Field Ornithology 74, 394–400.
Use of nest boxes by Vaux’s Swifts.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference.’ 2nd edn. (Springer: New York.)

Burton, N. H. K. (2007). Intraspecific latitudinal variation in nest orientation among ground-nesting passerines: a study using published data. The Condor 109, 441–446.
Intraspecific latitudinal variation in nest orientation among ground-nesting passerines: a study using published data.Crossref | GoogleScholarGoogle Scholar |

Carey, C. (1996). ‘Avian Energetics and Nutritional Ecology.’ (Chapman & Hall: New York.)

Carvalho, L. S., Knott, B., Berg, M. L., Bennett, A. T. D., and Hunt, D. M. (2011). Ultraviolet-sensitive vision in long-lived birds. Proceedings of the Royal Society B: Biological Sciences 278, 107–114.
| 1:CAS:528:DC%2BC3MXmt1GlurY%3D&md5=1f87ee24e15b7551ade0e351e1724016CAS | 20667872PubMed |

Catry, I., Alcazar, R., Franco, A. M. A., and Sutherland, W. J. (2009). Identifying the effectiveness and constraints of conservation interventions: a case study of the endangered Lesser Kestrel. Biological Conservation 142, 2782–2791.
Identifying the effectiveness and constraints of conservation interventions: a case study of the endangered Lesser Kestrel.Crossref | GoogleScholarGoogle Scholar |

Catry, I., Franco, A. M. A., and Sutherland, W. J. (2011). Adapting conservation efforts to face climate change: modifying nest-site provisioning for Lesser Kestrels. Biological Conservation 144, 1111–1119.
Adapting conservation efforts to face climate change: modifying nest-site provisioning for Lesser Kestrels.Crossref | GoogleScholarGoogle Scholar |

Chase, M. K., Nur, N., and Geupel, G. R. (2005). Effects of weather and population density on reproductive success and population dynamics in a Song Sparrow (Melospiza melodia) population: a long-term study. The Auk 122, 571–592.
Effects of weather and population density on reproductive success and population dynamics in a Song Sparrow (Melospiza melodia) population: a long-term study.Crossref | GoogleScholarGoogle Scholar |

Chausson, A., Henry, I., Almasi, B., and Roulin, A. (2014). Barn Owl (Tyto alba) breeding biology in relation to breeding season climate. Journal für Ornithologie 155, 273–281.
Barn Owl (Tyto alba) breeding biology in relation to breeding season climate.Crossref | GoogleScholarGoogle Scholar |

Coumou, D., and Rahmstorf, D. (2012). A decade of weather extremes. Nature Climate Change 2, 491–496.

Cunningham, S. J., Martin, R. O., Hojem, C. L., and Hockey, P. A. R. (2013). Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: a study of Common Fiscals. PLoS ONE 8, e74613.
Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: a study of Common Fiscals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOrurzF&md5=c5bbc43bcbd1424842b48fc59a56f91bCAS | 24040296PubMed |

Dawson, R. D., Lawrie, C. C., and O’Brien, E. L. (2005). The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507.
The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine.Crossref | GoogleScholarGoogle Scholar | 15891832PubMed |

De Frenne, P., Graae, B. J., Rodriguez-Sanchez, F., Kolb, A., Chabrerie, O., Decocq, G., De Kort, H., De Schrijver, A., Diekman, M., Eriksson, O., Gruwez, R., Hermy, M., Lenoir, J., Plue, J., Coomes, D. A., and Verheyen, K. (2013). Latitudinal gradients as natural laboratories to infer species’ responses to temperature. Journal of Ecology 101, 784–795.
Latitudinal gradients as natural laboratories to infer species’ responses to temperature.Crossref | GoogleScholarGoogle Scholar |

DuRant, S. E., Hopkins, W. A., Hawley, D. M., and Hepp, G. R. (2012). Incubation temperature affects multiple measures of immunocompetence in young Wood Ducks (Aix sponsa). Biology Letters 8, 108–111.
Incubation temperature affects multiple measures of immunocompetence in young Wood Ducks (Aix sponsa).Crossref | GoogleScholarGoogle Scholar | 21865246PubMed |

Eastwood, J. R., Berg, M. L., Ribot, R. F. H., Raidal, S. R., Buchanan, K. L., Walder, K. R., and Bennett, A. T. D. (2014). Phylogenetic analysis of beak and feather disease virus across a host ring-species complex. Proceedings of the National Academy of Sciences of the United States of America 111, 14153–14158.
Phylogenetic analysis of beak and feather disease virus across a host ring-species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCisbfM&md5=bb4b5be30988c72ea6302462202067bbCAS | 25225394PubMed |

Eastwood, J. R., Berg, M. L., Spolding, B., Buchanan, K. L., Bennett, A. T. D., and Walder, K. (2015). Prevalence of beak and feather disease virus in wild Platycercus elegans: comparison of three tissue types using a probe-based real-time qPCR test. Australian Journal of Zoology 63, 1–8.
Prevalence of beak and feather disease virus in wild Platycercus elegans: comparison of three tissue types using a probe-based real-time qPCR test.Crossref | GoogleScholarGoogle Scholar |

Eeva, T., Lehikoinen, E., Ronka, M., Lummaa, V., and Currie, D. (2002). Different responses to cold weather in two Pied Flycatcher populations. Ecography 25, 705–713.
Different responses to cold weather in two Pied Flycatcher populations.Crossref | GoogleScholarGoogle Scholar |

Evans, M. R., Lank, D. B., Boyd, W. S., and Cooke, F. (2002). A comparison of the characteristics and fate of Barrow’s Goldeneye and Bufflehead nests in nest boxes and natural cavities. The Condor 104, 610–619.
A comparison of the characteristics and fate of Barrow’s Goldeneye and Bufflehead nests in nest boxes and natural cavities.Crossref | GoogleScholarGoogle Scholar |

Garnett, S., Franklin, D., Ehmke, G., VanDerWal, J., Hodgson, L., Pavey, C., Reside, A., Welbergen, J., Butchart, S., Perkins, G., and Williams, S. (2013). Climate change adaptation strategies for Australian birds. National Climate Change Adaptation Research Facility, Gold Coast.

Gibbons, P., Lindenmayer, D. B., Barry, S. C., and Tanton, M. T. (2002). Hollow selection by vertebrate fauna in forests of southeastern Australia and implications for forest management. Biological Conservation 103, 1–12.
Hollow selection by vertebrate fauna in forests of southeastern Australia and implications for forest management.Crossref | GoogleScholarGoogle Scholar |

Goldingay, R. L., and Stevens, J. R. (2009). Use of artificial tree hollows by Australian birds and bats. Wildlife Research 36, 81–97.
Use of artificial tree hollows by Australian birds and bats.Crossref | GoogleScholarGoogle Scholar |

Grant, G. S. (1982). Avaian incubation: egg temperature, nest humidity, and behavioral thermoregulation in a hot environment. Ornithological Monographs 30, 1–75.

Hepp, G. R., Kennamer, R. A., and Johnson, M. H. (2006). Maternal effects in Wood Ducks: incubation temperature influences incubation period and neonate phenotype. Functional Ecology 20, 308–314.
Maternal effects in Wood Ducks: incubation temperature influences incubation period and neonate phenotype.Crossref | GoogleScholarGoogle Scholar |

Hegerl, G., Hanlon, H., and Beierkuhnlein, C. (2011). Elusive extremes. Nature Geoscience 4, 142–143.
Elusive extremes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFarsbs%3D&md5=abe3b89297d4e79167530f2c9f47c69aCAS |

Hochachka, W. (1990). Seasonal decline in reproductive performance of Song Sparrows. Ecology 71, 1279–1288.
Seasonal decline in reproductive performance of Song Sparrows.Crossref | GoogleScholarGoogle Scholar |

Hooge, P. N., Stanback, M. T., and Koenig, W. D. (1999). Nest-site selection in the Acorn Woodpecker. The Auk 116, 45–54.
Nest-site selection in the Acorn Woodpecker.Crossref | GoogleScholarGoogle Scholar |

IPCC (2013). ‘Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: Cambridge & New York.)

Iraeta, P., Díaz, J. A., and Bauwens, D. (2007). Nest-site selection by Psammodromus algirus in a laboratory thermal gradient. Journal of Herpetology 41, 360–364.
Nest-site selection by Psammodromus algirus in a laboratory thermal gradient.Crossref | GoogleScholarGoogle Scholar |

Jiguet, F., Devictor, V., Ottvall, R., Van Turnhout, C., Van der Jeugd, H., and Lindstrom, A. (2010). Bird population trends are linearly affected by climate change along species thermal ranges. Proceedings of the Royal Society B: Biological Sciences 277, 3601–3608.
Bird population trends are linearly affected by climate change along species thermal ranges.Crossref | GoogleScholarGoogle Scholar | 20554552PubMed |

Joseph, L., Dolman, G., Donnellan, S., Saint, K. M., Berg, M. L., and Bennett, A. T. D. (2008). Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots. Proceedings of the Royal Society B: Biological Sciences 275, 2431–2440.
Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots.Crossref | GoogleScholarGoogle Scholar | 18664434PubMed |

Kerth, G., Weissmann, K., and Konig, B. (2001). Day roost selection in female Bechstein’s Bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature. Oecologia 126, 1–9.
Day roost selection in female Bechstein’s Bats (Myotis bechsteinii): a field experiment to determine the influence of roost temperature.Crossref | GoogleScholarGoogle Scholar |

Knott, B., Berg, M. L., Morgan, E. R., Buchanan, K. L., Bowmaker, J. K., and Bennett, A. T. D. (2010). Avian retinal oil droplets: dietary manipiulation of colour vision? Proceedings of the Royal Society B: Biological Sciences 277, 953–962.
| 19939843PubMed |

Knott, B. K., Davies, W. I. L., Carvalho, L. S., Berg, M. L., Buchanan, K. L., Bowmaker, J. K., Bennett, A. T. D., and Hunt, D. M. (2013). How parrots see their colours: novelty in the visual pigments of Platycercus elegans. The Journal of Experimental Biology 216, 4454–4461.
How parrots see their colours: novelty in the visual pigments of Platycercus elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1SgtLw%3D&md5=d33e0bfabe0fe9014c13f6e40a8006d7CAS |

Krebs, E. A. (1998). Breeding biology of crimson rosellas (Platycercus elegans) on Black Mountain, Australian Capital Territory. Australian Journal of Zoology 46, 119–136.
Breeding biology of crimson rosellas (Platycercus elegans) on Black Mountain, Australian Capital Territory.Crossref | GoogleScholarGoogle Scholar |

Krebs, E. A. (1999). Last but not least: nestling growth and survival in asynchronously hatching Crimson Rosellas. Journal of Animal Ecology 68, 266–281.
Last but not least: nestling growth and survival in asynchronously hatching Crimson Rosellas.Crossref | GoogleScholarGoogle Scholar |

Krebs, E. A. (2001). Begging and food distribution in Crimson Rosella (Platycercus elegans) broods: why don’t hungry chicks beg more? Behavioral Ecology and Sociobiology 50, 20–30.
Begging and food distribution in Crimson Rosella (Platycercus elegans) broods: why don’t hungry chicks beg more?Crossref | GoogleScholarGoogle Scholar |

Krebs, E. A., and Magrath, R. D. (2000). Food allocation in Crimson Rosella broods: parents differ in their responses to chick hunger. Animal Behaviour 59, 739–751.
Food allocation in Crimson Rosella broods: parents differ in their responses to chick hunger.Crossref | GoogleScholarGoogle Scholar | 10792929PubMed |

Masello, J. F., and Quillfeldt, P. (2004). Consequences of La Nina phase of ENSO for the survival and growth of nestling Burrowing Parrots on the Atlantic coast of South America. Emu 104, 337–346.
Consequences of La Nina phase of ENSO for the survival and growth of nestling Burrowing Parrots on the Atlantic coast of South America.Crossref | GoogleScholarGoogle Scholar |

McComb, W. C., and Noble, R. E. (1981). Microclimates of nest boxes and natural cavities in bottomland hardwoods. Journal of Wildlife Management 45, 284–289.
Microclimates of nest boxes and natural cavities in bottomland hardwoods.Crossref | GoogleScholarGoogle Scholar |

McKechnie, A. E., and Wolf, B. O. (2010). Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biology Letters 6, 253–256.
Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves.Crossref | GoogleScholarGoogle Scholar | 19793742PubMed |

Meehl, G. A., and Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997.
More intense, more frequent, and longer lasting heat waves in the 21st century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGmtrc%3D&md5=953d839bccf5228d5914520a15a16c45CAS | 15310900PubMed |

Meehl, G. A., Zwiers, F., Evans, J., Knutson, T., Mearns, L., and Whetton, P. (2000). Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society 81, 427–436.
Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change.Crossref | GoogleScholarGoogle Scholar |

Menkhorst, P. W. (1984). Use of nest boxes by forest vertebrates in Gippsland: acceptance, preference and demand. Wildlife Research 11, 255–264.
Use of nest boxes by forest vertebrates in Gippsland: acceptance, preference and demand.Crossref | GoogleScholarGoogle Scholar |

Mitchell, J. F. B., Lowe, J., Wood, R. A., and Vellinga, M. (2006). Extreme events due to human-induced climate change. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 364, 2117–2133.
Extreme events due to human-induced climate change.Crossref | GoogleScholarGoogle Scholar |

Moritz, C., and Agudo, R. (2013). The future of species under climate change: resilience or decline? Science 341, 504–508.
The future of species under climate change: resilience or decline?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFyjsr3F&md5=758cfb0d1c7eb02d652ba20f7f965910CAS | 23908228PubMed |

Murphy, M. T. (1985). Nestling Eastern Kingbird growth: effects of initial size and ambient temperature. Ecology 66, 162–170.
Nestling Eastern Kingbird growth: effects of initial size and ambient temperature.Crossref | GoogleScholarGoogle Scholar |

Nord, A., and Nilsson, J. (2011). Incubation temperature affects growth and energy metabolism in Blue Tit nestlings. American Naturalist 178, 639–651.
Incubation temperature affects growth and energy metabolism in Blue Tit nestlings.Crossref | GoogleScholarGoogle Scholar | 22030733PubMed |

Perez, J. H., Ardia, D. R., Chad, E. K., and Clotfelter, E. D. (2008). Experimental heating reveals nest temperature affects nestling condition in Tree Swallows (Tachycineta bicolor). Biology Letters 4, 468–471.
Experimental heating reveals nest temperature affects nestling condition in Tree Swallows (Tachycineta bicolor).Crossref | GoogleScholarGoogle Scholar | 18628112PubMed |

Pike, D. A. (2014). Forecasting the viability of sea turtle eggs in a warming world. Global Change Biology 20, 7–15.
Forecasting the viability of sea turtle eggs in a warming world.Crossref | GoogleScholarGoogle Scholar | 24106042PubMed |

Pipoly, I., Bókony, V., Seress, G., Szabó, K., and Liker, A. (2013). Effects of extreme weather on reproductive success in a temperate-breeding songbird. PLoS ONE 8, e80033.
Effects of extreme weather on reproductive success in a temperate-breeding songbird.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslGrur7L&md5=72cd087243f9a1e241efd970e0907ad5CAS | 24224033PubMed |

Quinn, G. P., and Keough, M. J. (2002) ‘Experimental Design and Data Analysis for Biologists.’ (Cambridge University Press: Cambridge.)

Renton, K. (2002). Influence of environmental variability on the growth of Lilac-crowned Parrot nestlings. The Ibis 144, 331–339.
Influence of environmental variability on the growth of Lilac-crowned Parrot nestlings.Crossref | GoogleScholarGoogle Scholar |

Ribot, R. F. H., Berg, M. L., Buchanan, K. L., Komdeur, J., Joseph, L., and Bennett, A. T. D. (2009). Does the ring species concept predict vocal variation in the Crimson Rosella, Platycercus elegans, complex? Animal Behaviour 77, 581–593.
Does the ring species concept predict vocal variation in the Crimson Rosella, Platycercus elegans, complex?Crossref | GoogleScholarGoogle Scholar |

Ribot, R. F. H., Berg, M. L., Buchanan, K. L., and Bennett, A. T. D. (2011). Fruitful use of bioacoustic alarm stimuli as a deterrent for Crimson Rosellas (Platycercus elegans). Emu 111, 360–367.
Fruitful use of bioacoustic alarm stimuli as a deterrent for Crimson Rosellas (Platycercus elegans).Crossref | GoogleScholarGoogle Scholar |

Ribot, R. F. H., Buchanan, K. L., Endler, J. A., Joseph, L., Bennett, A. T. D., and Berg, M. L. (2012). Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex. PLoS ONE 7, e50484.
Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVygsr7E&md5=6fbb5f04fa06fc9660388af1e1430799CAS |

Ribot, R. F. H., Berg, M. L., Buchanan, K. L., and Bennett, A. T. D. (2013). Is there variation in the response to contact call playbacks across the hybrid zone of the parrot Platycercus elegans? Journal of Avian Biology 44, 399–407.
Is there variation in the response to contact call playbacks across the hybrid zone of the parrot Platycercus elegans?Crossref | GoogleScholarGoogle Scholar |

Sedgeley, J. A. (2001). Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand. Journal of Applied Ecology 38, 425–438.
Quality of cavity microclimate as a factor influencing selection of maternity roosts by a tree-dwelling bat, Chalinolobus tuberculatus, in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Sekercioglu, C. H., Schneider, S. H., Fay, J. P., and Loarie, S. R. (2008). Climate change, elevational range shifts, and bird extinctions. Conservation Biology 22, 140–150.
Climate change, elevational range shifts, and bird extinctions.Crossref | GoogleScholarGoogle Scholar | 18254859PubMed |

Şekercioğlu, Ç. H., Primack, R. B., and Wormworth, J. (2012). The effects of climate change on tropical birds. Biological Conservation 148, 1–18.
The effects of climate change on tropical birds.Crossref | GoogleScholarGoogle Scholar |

Siikamäki, P. (1996). Nestling growth and mortality of Pied Flycatchers Ficedula hypoleuca in relation to weather and breeding effort. The Ibis 138, 471–478.
Nestling growth and mortality of Pied Flycatchers Ficedula hypoleuca in relation to weather and breeding effort.Crossref | GoogleScholarGoogle Scholar |

Valkama, J., and Korpimaki, E. (1999). Nestbox characteristics, habitat quality and reproductive success of Eurasian Kestrels. Bird Study 46, 81–88.
Nestbox characteristics, habitat quality and reproductive success of Eurasian Kestrels.Crossref | GoogleScholarGoogle Scholar |

Vasseur D. A. DeLong J. P. Gilbert B. Greig H. S. Harley C. D. G. McCann K. S. Savage V. Tunney T. D. O’Connor M. I. 2014 Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences 281 1 8 10.1098/rspb.2013.2612

Welbergen, J. A., Klose, S. M., Markus, N., and Eby, P. (2008). Climate change and the effects of temperature extremes on Australian flying-foxes. Proceedings of the Royal Society B: Biological Sciences 275, 419–425.
Climate change and the effects of temperature extremes on Australian flying-foxes.Crossref | GoogleScholarGoogle Scholar | 18048286PubMed |

Wiebe, K. L. (2001). Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? The Auk 118, 412–421.
Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers?Crossref | GoogleScholarGoogle Scholar |

Williams, L. M., and Brittingham, M. C. (1997). Selection of maternity roosts by big brown bats. Journal of Wildlife Management 61, 359–368.
Selection of maternity roosts by big brown bats.Crossref | GoogleScholarGoogle Scholar |

Wilson, S. F., and Verbeek, N. A. M. (1995). Patterns of Wood Duck nest temperatures during egg-laying and incubation. The Condor 97, 963–969.
Patterns of Wood Duck nest temperatures during egg-laying and incubation.Crossref | GoogleScholarGoogle Scholar |

Windsor, R. L., Fegely, J. L., and Ardia, D. R. (2013). The effects of nest size and insulation on thermal properties of Tree Swallow nests. Journal of Avian Biology 44, 305–310.
The effects of nest size and insulation on thermal properties of Tree Swallow nests.Crossref | GoogleScholarGoogle Scholar |

Winkler, D. W., and Allen, P. E. (1996). The seasonal decline in Tree Swallow clutch size: physiological constraint or strategic adjustment? Ecology 77, 922–932.
The seasonal decline in Tree Swallow clutch size: physiological constraint or strategic adjustment?Crossref | GoogleScholarGoogle Scholar |

Winkler, D. W., Dunn, P. O., and McCulloch, C. E. (2002). Predicting the effects of climate change on avian life-history traits. Proceedings of the National Academy of Sciences of the United States of America 99, 13595–13599.
Predicting the effects of climate change on avian life-history traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XotVKmsbw%3D&md5=5eb3e4ecb0f0734a25bf4ea780c4d2c5CAS | 12370441PubMed |

Winkler, D., Luo, M., and Rakhimberdiev, E. (2013). Temperature effects on food supply and chick mortality in Tree Swallows (Tachycineta bicolor). Oecologia 173, 129–138.
Temperature effects on food supply and chick mortality in Tree Swallows (Tachycineta bicolor).Crossref | GoogleScholarGoogle Scholar | 23468236PubMed |