Evolutionary history of birds across southern Australia: structure, history and taxonomic implications of mitochondrial DNA diversity in an ecologically diverse suite of species
Gaynor Dolman A B C D and Leo Joseph AA Australian National Wildlife Collection, CSIRO National Research Collections Australia, GPO Box 1700, Canberra ACT 2601, Australia.
B Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
C Molecular Systematics Unit, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.
D Corresponding author. Email: gaynor.dolman@museum.wa.gov.au
Emu 115(1) 35-48 https://doi.org/10.1071/MU14047
Submitted: 7 May 2014 Accepted: 10 September 2014 Published: 9 February 2015
Abstract
Recent phylogeographic studies have examined the location and timing of putative Plio-Pleistocene biogeographical barriers in moulding present-day patterns of diversity in southern Australian vertebrates. We previously investigated the divergence history of an assemblage of southern Australian birds. Here we more explicitly incorporate idiosyncratic effects of dietary ecology and habitat on the long-term demographic stability and the presence or absence of genetic structure on each of 12 species of bird. Our data suggest that the Eyrean Barrier (Flinders Ranges–Lake Eyre Basin) has been critical in shaping present-day diversity, especially that of mesic and mallee environments, and that other barriers (e.g. Murchison Barrier, Nullarbor Barrier) have played a lesser role. In contrast, nectarivory and occurrence in patchily distributed habitats are correlated with weak or no phylogeographic structure. Population expansions were most prevalent in western parts of species’ ranges. Substantial genetic divergences accompanied by moderate or no phenotypic divergence challenge traditional approaches to taxonomy in the Blue Bonnet (Northiella haematogaster), Chestnut Quail-thrush (Cinclosoma castanotum), White-eared Honeyeater (Nesoptilotis leucotis) and Scarlet Robin (Petroica boodang) and we suggest taxonomic treatments for each of these species that accommodate existing data. We elevate some taxa to species rank and note where further analyses of gene flow will be useful in clarifying remaining issues. Further phylogeographic study in the region of the Mount Lofty Ranges, Flinders Ranges, Spencer Gulf and Gulf St Vincent) of South Australia is warranted.
Additional keywords: Australian birds, biogeography, evolution, Eyrean Barrier, genetics, southern Australia.
References
Alcaide, M., Scordato, E. S. C., Price, T. D., and Irwin, D. E. (2014). Genomic divergence in a ring species complex. Nature 511, 83–85.| Genomic divergence in a ring species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslGitbo%3D&md5=71659fa3d5c5195a7d8b434dbab1297bCAS | 24870239PubMed |
Andersen, M. J, Nyári, A. S, Mason, I, Joseph, L, Dumbacher, J. P, Filardi, C.E, and Moyle, R.G (2014). Multi-locus phylogeography of the world’s most polytypic bird: the Pachycephala pectoralis/melanura species complex. Zoological Journal of the Linnean Society 170, 566–588.
| Multi-locus phylogeography of the world’s most polytypic bird: the Pachycephala pectoralis/melanura species complex.Crossref | GoogleScholarGoogle Scholar |
Avise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of Biogeography 36, 3–15.
| Phylogeography: retrospect and prospect.Crossref | GoogleScholarGoogle Scholar |
Avise, J. C., and Walker, D. (1998). Pleistocene phylogeographic effects on avian populations and the speciation process. Proceedings of the Royal Society of London –B. Biological Sciences 265, 457–463.
| Pleistocene phylogeographic effects on avian populations and the speciation process.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3jtFWhsQ%3D%3D&md5=87bac402384fee564cc50bc9c8d47ea5CAS |
Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489–522.
Bermingham, E., and Moritz, C. (1998). Comparative phylogeography: concepts and applications. Molecular Ecology 7, 367–369.
| Comparative phylogeography: concepts and applications.Crossref | GoogleScholarGoogle Scholar |
Bowman, D.M.J.S, Brown, G.K., Braby, M.F., Brown, J.R., Cook, L.G., Crisp, M.D., Ford, F., Haberle, S., Hughes, J., Isagi, Y., Joseph, L., McBride, J., Nelson, G., and Ladiges, P.Y. (2010). Biogeography of the Australian monsoon tropic. Journal of Biogeography 37, 201–216.
| Biogeography of the Australian monsoon tropic.Crossref | GoogleScholarGoogle Scholar |
Byrne, M., Yeates, D., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K. H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
| Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=0a70f013c6a0c859f932d75cb83c0680CAS | 18761619PubMed |
Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D., Aplin, K., Cantrill, D. J., Cook, L. G., Crisp, M. D., Keogh, S., Melville, J., Moritz, C., Porch, N., Sniderman, J. M. K., Sunnucks, P., and Weston, P. H. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
| Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |
Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T., and Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic Forest Hotspot. Science 323, 785–789.
| Stability predicts genetic diversity in the Brazilian Atlantic Forest Hotspot.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlersb0%3D&md5=016242858f2d20f1e41082048f7dfa97CAS | 19197066PubMed |
Chan, Y. L., Schanzenbach, D., and Hickerson, M. J. (2014). Detecting concerted demographic response across community assemblages using hierarchical approximate Bayesian computation. Molecular Biology and Evolution 31, 2501–2515.
| Detecting concerted demographic response across community assemblages using hierarchical approximate Bayesian computation.Crossref | GoogleScholarGoogle Scholar | 24925925PubMed |
Chapple, D. G., Keogh, J. S., and Hutchinson, M. N. (2005). Substantial genetic substructuring in south-eastern and alpine Australia revealed by molecular phylogeography of the Egernia whitii (Lacertilia : Scincidae) species group. Molecular Ecology 14, 1279–1292.
| Substantial genetic substructuring in south-eastern and alpine Australia revealed by molecular phylogeography of the Egernia whitii (Lacertilia : Scincidae) species group.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktleqs7o%3D&md5=abf093cf21a216a35ef0509027c54921CAS | 15813770PubMed |
Chapple, D. G., Hoskin, C. J., Chapple, S. N. J., and Thompson, M. B. (2011a). Phylogeographic divergence in the widespread Delicate Skink (Lampropholis delicata) corresponds to dry habitat barriers in eastern Australia. BMC Evolutionary Biology 11, 191.
| Phylogeographic divergence in the widespread Delicate Skink (Lampropholis delicata) corresponds to dry habitat barriers in eastern Australia.Crossref | GoogleScholarGoogle Scholar | 21726459PubMed |
Chapple, D. G., Chapple, S. N. J., and Thompson, M. B. (2011b). Biogeographic barriers in south-eastern Australia drive phylogeographic divergence in the Garden Skink, Lampropholis guichenoti. Journal of Biogeography 38, 1761–1775.
| Biogeographic barriers in south-eastern Australia drive phylogeographic divergence in the Garden Skink, Lampropholis guichenoti.Crossref | GoogleScholarGoogle Scholar |
Christidis, L., and Boles, W. E. (2008). ‘Systematics and Taxonomy of Australian Birds.’ (CSIRO Publishing: Melbourne.)
Cooper, N. K., Bertozzi, T., Baynes, A., and Teale, R. J. (2003). The relationship between eastern and western populations of the Heath Rat, Pseudomys shortridgei (Rodentia : Muridae). Records of the Western Australian Museum 21, 367–370.
Cracraft, J. L. (1991). Patterns of diversification within continental biotas: hierarchical congruence among the areas of endemism of Australian vertebrates. Australian Systematic Botany 4, 211–227.
| Patterns of diversification within continental biotas: hierarchical congruence among the areas of endemism of Australian vertebrates.Crossref | GoogleScholarGoogle Scholar |
Crisp, M. D., and Cook, L. G. (2007). A congruent molecular signature across multiple plant lineages. Molecular Phylogenetics and Evolution 43, 1106–1117.
| A congruent molecular signature across multiple plant lineages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvVOrtbw%3D&md5=6af91183d96b125a2a1b5855349bdd47CAS | 17434758PubMed |
Davies, R., Copley, P., and Pearman, C. (1986). Vegetation of the Great Victoria Desert: patterns of distribution. In ‘The Great Victoria Desert’. (Eds P. Greenslade, L. Joseph and R. Barley.) pp. 33–49. (Nature Conservation Society of South Australia: Adelaide.)
Dolman, G., and Joseph, L. (2012). A species assemblage approach to comparative phylogeography of birds in southern Australia. Ecology and Evolution 2, 354–369.
| A species assemblage approach to comparative phylogeography of birds in southern Australia.Crossref | GoogleScholarGoogle Scholar | 22423329PubMed |
Donnellan, S. C., Armstrong, J., Pickett, M., Milne, T., Baulderstone, J., Holfelder, T., and Bertozzi, T. (2009). Systematic and conservation implications of mitochondrial DNA diversity in emu-wrens, Stipiturus (Aves : Maluridae). Emu 109, 143–152.
| Systematic and conservation implications of mitochondrial DNA diversity in emu-wrens, Stipiturus (Aves : Maluridae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKgt7k%3D&md5=44483c53f6f94c8403d8182dbbb8db2eCAS |
Dubey, S., and Shine, R. (2010). Evolutionary diversification of the lizard genus Bassiana (Scincidae) across southern Australia. PLoS ONE 5, e12982.
| Evolutionary diversification of the lizard genus Bassiana (Scincidae) across southern Australia.Crossref | GoogleScholarGoogle Scholar | 20886050PubMed |
Ford, J. (1971). Distribution, ecology and taxonomy of some Western Australian passerine birds. Emu 71, 103–120.
| Distribution, ecology and taxonomy of some Western Australian passerine birds.Crossref | GoogleScholarGoogle Scholar |
Ford, J. R. (1981). Geographic variation in Cinclosoma castanotum and its historical significance. Emu 81, 185–192.
| Geographic variation in Cinclosoma castanotum and its historical significance.Crossref | GoogleScholarGoogle Scholar |
Ford, J. R. (1987a). Hybrid zones in Australian birds. Emu 87, 158–178.
| Hybrid zones in Australian birds.Crossref | GoogleScholarGoogle Scholar |
Ford, J. R. (1987b). Minor isolates and minor geographical barriers in avian speciation in continental Australia. Emu 87, 90–102.
| Minor isolates and minor geographical barriers in avian speciation in continental Australia.Crossref | GoogleScholarGoogle Scholar |
Forshaw, J. M. (2002). ‘Australian Parrots.’ 3rd edn. (Robina Press: Robina, Qld.)
Gill, F. B. (2014). Species taxonomy of birds: which null hypothesis? Auk 131, 150–161.
| Species taxonomy of birds: which null hypothesis?Crossref | GoogleScholarGoogle Scholar |
Haydon, D. T., Friar, J. K., and Pianka, E. R. (2000a). Fire-driven dynamic mosaics in the Great Victoria Desert, Australia. I. Fire geometry. Landscape Ecology 15, 373–381.
| Fire-driven dynamic mosaics in the Great Victoria Desert, Australia. I. Fire geometry.Crossref | GoogleScholarGoogle Scholar |
Haydon, D. T., Friar, J. K., and Pianka, E. R. (2000b). Fire-driven dynamic mosaics in the Great Victoria Desert, Australia. II. A spatial and temporal landscape model. Landscape Ecology 15, 407–423.
| Fire-driven dynamic mosaics in the Great Victoria Desert, Australia. II. A spatial and temporal landscape model.Crossref | GoogleScholarGoogle Scholar |
Hebert, P., Stoeckle, M., Zemlak, T., and Francis, C. (2004). Identification of birds through DNA barcodes. PLoS Biology 2, e312.
| Identification of birds through DNA barcodes.Crossref | GoogleScholarGoogle Scholar | 15455034PubMed |
Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 359, 183–195.
| Genetic consequences of climatic oscillations in the Quaternary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c3gsVSjuw%3D%3D&md5=9fd788ddbb414ccae9e19ca9b45609e6CAS |
Hickerson, M. J., Carstens, B. C., Cavender-Bares, J., Crandall, K. A., Graham, C. H., Johnson, J. B., Rissler, L., Victoriano, P. F., and Yoder, A. D. (2010). Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution 54, 291–301.
| Phylogeography’s past, present, and future: 10 years after Avise, 2000.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MjpvFKntw%3D%3D&md5=bd485d2bd347a50a1cdab6037d15f2fbCAS | 19755165PubMed |
Higgins, P. J. (Ed.) (1999). ‘Handbook of Australian, New Zealand and Antarctic Birds. Vol. 4: Parrots to Dollarbird.’ (Oxford University Press: Melbourne.)
Higgins, P. J., and Peter, J. M. (Eds) (2002). ‘Handbook of Australian, New Zealand and Antarctic Birds. Vol. 6: Pardalotes to Shrike-thrushes.’ (Oxford University Press: Melbourne.)
Higgins, P. J., Peter, J. M., and Steele, W. K. (Eds) (2001). ‘Handbook of Australian, New Zealand and Antarctic Birds. Vol. 5: Tyrant-flycatchers to Chats.’ (Oxford University Press: Melbourne.)
Jennings, W. B., and Edwards, S. V. (2005). Speciational history of Australian grass finches (Poephila) inferred from thirty gene trees. Evolution 59, 2033–2047.
| 1:CAS:528:DC%2BD2MXhtFGiurnM&md5=f3a2484d17d20aec1a8b21f44316ef68CAS | 16261740PubMed |
Johnstone, R., and Storr, G. (2004). ‘Handbook of Western Australian Birds. Vol. II – Passerines (Blue-winged Pitta to Goldfinch).’ (Western Australian Museum: Perth.)
Jønsson, K. A., Bowie, R. C. K., Moyle, R. G., Christidis, L., Filardi, C. E., Norman, J. A., and Fjeldså, J. (2008). Molecular phylogenetics and diversification within one of the most geographically variable bird species complexes Pachycephala pectoralis/melanura. Journal of Avian Biology 39, 473–478.
| Molecular phylogenetics and diversification within one of the most geographically variable bird species complexes Pachycephala pectoralis/melanura.Crossref | GoogleScholarGoogle Scholar |
Joseph, L. (1985). Sexual dimorphism in the Blue Bonnet. Corella 9, 30–31.
Joseph, L., and Omland, K. (2009). Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds. Emu 109, 1–23.
| Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds.Crossref | GoogleScholarGoogle Scholar |
Joseph, L., and Wilke, T. (2006). Molecular resolution to the population history, systematics, biogeography and of the Australian ringneck parrots Barnardius: are we there yet? Emu 106, 49–62.
| Molecular resolution to the population history, systematics, biogeography and of the Australian ringneck parrots Barnardius: are we there yet?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Wltrg%3D&md5=c65bc92c1dbe3fdd3100e7c9a15d2075CAS |
Joseph, L., and Wilke, T. (2007). Lack of phylogeographical structure in three widespread Australian birds reinforces emerging challenges in Australian historical biogeography. Journal of Biogeography 34, 612–624.
| Lack of phylogeographical structure in three widespread Australian birds reinforces emerging challenges in Australian historical biogeography.Crossref | GoogleScholarGoogle Scholar |
Joseph, L., Toon, A., Schirtzinger, E., and Wright, T. (2011). Molecular systematics of two enigmatic genera Psittacella and Pezoporus illuminate the ecological radiation of Australo-Papuan parrots. Molecular Phylogenetics and Evolution 59, 675–684.
| Molecular systematics of two enigmatic genera Psittacella and Pezoporus illuminate the ecological radiation of Australo-Papuan parrots.Crossref | GoogleScholarGoogle Scholar | 21453777PubMed |
Joseph, L., Toon, A., Nyári, Á. S., Trueman, J., and Gardner, J. (2014a). A new synthesis of the molecular systematics and biogeography of honeyeaters (Passeriformes : Meliphagidae) highlights biogeographical complexity of a spectacular avian radiation. Zoologica Scripta 43, 235–248.
| A new synthesis of the molecular systematics and biogeography of honeyeaters (Passeriformes : Meliphagidae) highlights biogeographical complexity of a spectacular avian radiation.Crossref | GoogleScholarGoogle Scholar |
Joseph, L., Nyari, A., and Andersen, M. (2014b). Taxonomic consequences of cryptic speciation in the Golden Whistler Pachycephala pectoralis complex in mainland southern Australia. Zootaxa 3900, 294–300.
| Taxonomic consequences of cryptic speciation in the Golden Whistler Pachycephala pectoralis complex in mainland southern Australia.Crossref | GoogleScholarGoogle Scholar | 25543741PubMed |
Kearns, A. M., Joseph, L., Edwards, S. V., and Double, M. C. (2009). Inferring the phylogeography and evolutionary history of the Splendid Fairy-wren Malurus splendens from mitochondrial DNA and spectrophotometry. Journal of Avian Biology 40, 7–17.
| Inferring the phylogeography and evolutionary history of the Splendid Fairy-wren Malurus splendens from mitochondrial DNA and spectrophotometry.Crossref | GoogleScholarGoogle Scholar |
Kearns, A., Joseph, L., Omland, K., and Cook, L. (2011). Testing the impact of transient Plio-Pleistocene barriers in monsoonal Australo-Papua: did mangrove habitats maintain genetic connectivity in the Black Butcherbird? Molecular Ecology 20, 5042–5059.
| Testing the impact of transient Plio-Pleistocene barriers in monsoonal Australo-Papua: did mangrove habitats maintain genetic connectivity in the Black Butcherbird?Crossref | GoogleScholarGoogle Scholar | 22060632PubMed |
Keast, J. A. (1961). Bird speciation on the Australian continent. Bulletin of the Museum of Comparative Zoology 123, 303–495.
Kemper, C. M., Cooper, S. J. B., Medlin, G. C., Adams, M., Stemmer, D., Saint, K. M., McDowell, M. C., and Austin, J. J. (2011). Cryptic Grey-bellied Dunnart (Sminthopsis griseoventer) discovered in South Australia: genetic, morphological and subfossil analyses show the value of collecting voucher material. Australian Journal of Zoology 59, 127–144.
| Cryptic Grey-bellied Dunnart (Sminthopsis griseoventer) discovered in South Australia: genetic, morphological and subfossil analyses show the value of collecting voucher material.Crossref | GoogleScholarGoogle Scholar |
Knowles, L. L. (2001). Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers. Molecular Ecology 10, 691–701.
| Did the Pleistocene glaciations promote divergence? Tests of explicit refugial models in montane grasshoppers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFKgurk%3D&md5=da29fa6990591361b1c7ac5650b93393CAS | 11298980PubMed |
Ladiges, P., Parra-O., C., Gibbs, A., Udovicic, F., Nelson, G., and Bayly, M. (2011). Historical biogeographical patterns in continental Australia: congruence among areas of endemism of two major clades of eucalypts. Cladistics 27, 29–41.
| Historical biogeographical patterns in continental Australia: congruence among areas of endemism of two major clades of eucalypts.Crossref | GoogleScholarGoogle Scholar |
Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
| DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=e0f03fd95772aa99ff025c5636a92150CAS | 19346325PubMed |
McCormack, J. E., Maley, J. M., Hird, S. M., Derryberry, E. P., Graves, G. R., and Brumfield, R. T. (2012). Next-generation sequencing reveals phylogeographic structure and a species tree for recent bird divergences. Molecular Phylogenetics and Evolution 62, 397–406.
| Next-generation sequencing reveals phylogeographic structure and a species tree for recent bird divergences.Crossref | GoogleScholarGoogle Scholar | 22063264PubMed |
McDonald, J. H., and Kreitman, M. (1991). Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654.
| Adaptive protein evolution at the Adh locus in Drosophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXks1yrtLs%3D&md5=e6b892776e80098bf3b5c23d120e5ea1CAS | 1904993PubMed |
Miller, S. A., Dykes, D. D., and Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16, 1215.
| A simple salting out procedure for extracting DNA from human nucleated cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVKlsrs%3D&md5=d6516a597c99f5163a2017ca0392cc1dCAS | 3344216PubMed |
Miller, E. J., Eldridge, M. D. B., Morris, K. D., Zenger, K. R., and Herbert, C. A. (2011). Genetic consequences of isolation: island Tammar Wallaby (Macropus eugenii) populations and the conservation of threatened species. Conservation Genetics 12, 1619–1631.
| Genetic consequences of isolation: island Tammar Wallaby (Macropus eugenii) populations and the conservation of threatened species.Crossref | GoogleScholarGoogle Scholar |
Moritz, C. (1994). Applications of mitochondrial DNA analysis in conservation: a critical review. Molecular Ecology 3, 401–411.
| Applications of mitochondrial DNA analysis in conservation: a critical review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtlyktrw%3D&md5=03c15639f6c28e6dd2cb88507dd367aaCAS |
Murphy, S., Joseph, L., Burbidge, A., and Austin, J. (2011). A cryptic and critically endangered species revealed by mitochondrial DNA analyses – the Western Ground Parrot. Conservation Genetics 12, 595–600.
| A cryptic and critically endangered species revealed by mitochondrial DNA analyses – the Western Ground Parrot.Crossref | GoogleScholarGoogle Scholar |
Neaves, L. E., Zenger, K. R., Prince, R. I. T., Eldridge, M. D. B., and Cooper, D. W. (2009). Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus. Molecular Ecology 18, 3363–3378.
| Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFKmsr%2FN&md5=075fe68986780d93d7d5c1b14807ac6fCAS | 19659477PubMed |
Neaves, L. E., Zenger, K. R., Prince, R. I. T., and Eldridge, M. D. B. (2012). Impact of Pleistocene aridity oscillations on the population history of a widespread, vagile Australian mammal, Macropus fuliginosus. Journal of Biogeography 39, 1545–1563.
| Impact of Pleistocene aridity oscillations on the population history of a widespread, vagile Australian mammal, Macropus fuliginosus.Crossref | GoogleScholarGoogle Scholar |
Nyári, A., and Joseph, L. (2011). Systematic dismantlement of Lichenostomus improves the basis for understanding relationships within the honeyeaters (Meliphagidae) and historical development of Australo-Papuan bird communities. Emu 111, 202–211.
| Systematic dismantlement of Lichenostomus improves the basis for understanding relationships within the honeyeaters (Meliphagidae) and historical development of Australo-Papuan bird communities.Crossref | GoogleScholarGoogle Scholar |
Pavlova, A., Amos, J. N., Joseph, L., Loynes, K., Austin, J., Keogh, J. S., Stone, G. N., Nicholls, J. A., and Sunnucks, P. (2013). Perched at the mito-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird. Evolution 67, 3412–3428.
| Perched at the mito-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVOisbrP&md5=45e4d642225624c5dde7d1b8baf716dfCAS | 24299397PubMed |
Pinho, C., and Hey, J. (2010). Divergence with gene flow: models and data. Annual Review of Ecology Evolution and Systematics 41, 215–230.
| Divergence with gene flow: models and data.Crossref | GoogleScholarGoogle Scholar |
Poelstra, J. W., Vijay, N., Bossu, C. M., Lantz, H., Ryll, B., Müller, I., Baglione, V., Unneberg, P., Wikelski, M., Grabherr, M. G., and Wolf, J. B. W. (2014). The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 344, 1410–1414.
| The genomic landscape underlying phenotypic integrity in the face of gene flow in crows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpslygsLk%3D&md5=b93d2e288e5bcef9cf4c541f075bc3ecCAS | 24948738PubMed |
Saunders, D. A. (1979). Distribution and taxonomy of the white-tailed and yellow-tailed black-cockatoos Calyptorhynchus spp. Emu 79, 215–227.
| Distribution and taxonomy of the white-tailed and yellow-tailed black-cockatoos Calyptorhynchus spp.Crossref | GoogleScholarGoogle Scholar |
Schodde, R. (1982). Origin, adaptation and evolution of birds in arid Australia. In ‘Evolution of the Flora and Fauna of Arid Australia’. (Eds W. R. Barker and P. J. M. Greenslade.) pp. 191–224. (Peacock Publications: Adelaide.)
Schodde, R., and Mason, I. J. (1991). Subspeciation in the Western Whipbird Psophodes nigrogularis and its zoogeographical significance, with descriptions of two new subspecies. Emu 91, 133–144.
| Subspeciation in the Western Whipbird Psophodes nigrogularis and its zoogeographical significance, with descriptions of two new subspecies.Crossref | GoogleScholarGoogle Scholar |
Schodde, R., and Mason, I. J. (1997). ‘Zoological Catalogue of Australia. Vol. 37.2: Aves (Columbidae to Coraciidae).’ (CSIRO Publishing: Melbourne.)
Schodde, R., and Mason, I. (1999). ‘Directory of Australian Birds: Passerines.’ (CSIRO Publishing: Melbourne.)
Schweizer, M., Seehausen, O., and Hertwig, S. T. (2011). Macroevolutionary patterns in the diversification of parrots: effects of climate change, geological events and key innovations. Journal of Biogeography 38, 2176–2194.
| Macroevolutionary patterns in the diversification of parrots: effects of climate change, geological events and key innovations.Crossref | GoogleScholarGoogle Scholar |
Schweizer, M., Guntert, M., and Hertwig, S. T. (2013). Out of the Bassian province: historical biogeography of the Australasian platycercine parrots (Aves, Psittaciformes). Zoologica Scripta 42, 13–27.
| Out of the Bassian province: historical biogeography of the Australasian platycercine parrots (Aves, Psittaciformes).Crossref | GoogleScholarGoogle Scholar |
Swofford, D. (2002). ‘PAUP. Phylogenetic Analysis Using Parsimony. Version 4.0b10.’ (Sinauer: Sunderland, MA.)
Symula, R., Keogh, J. S., and Cannatella, D. C. (2008). Ancient phylogeographic divergence in southeastern Australia among populations of the widespread Common Froglet, Crinia signifera. Molecular Phylogenetics and Evolution 47, 569–580.
| Ancient phylogeographic divergence in southeastern Australia among populations of the widespread Common Froglet, Crinia signifera.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslKlu7c%3D&md5=09c919322315d101434cda57f4ed2215CAS | 18348908PubMed |
Tobias, J., Seddon, P., Spottiswoode, C., Pilgrim, J. D., Fishpool, L. D. C., and Collar, N. J. (2010). Quantitative criteria for species delimitation. Ibis 152, 724–746.
| Quantitative criteria for species delimitation.Crossref | GoogleScholarGoogle Scholar |
Toon, A., Hughes, J., and Joseph, L. (2010). Multilocus analysis of honeyeaters (Aves : Meliphagidae) highlights the spatio-temporal heterogeneity in the influence of biogeographic barriers in the Australian monsoonal zone. Molecular Ecology 19, 2980–2994.
| Multilocus analysis of honeyeaters (Aves : Meliphagidae) highlights the spatio-temporal heterogeneity in the influence of biogeographic barriers in the Australian monsoonal zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyktb3F&md5=f95a3bd717f4ff1685bc0fb59ba8e538CAS | 20609078PubMed |
Toon, A., Austin, J., Dolman, G., Pedler, L., and Joseph, L. (2012). Evolution of arid zone birds in Australia: leapfrog distribution patterns and mesic-arid connections in quail-thrush. Molecular Phylogenetics and Evolution 62, 286–295.
| Evolution of arid zone birds in Australia: leapfrog distribution patterns and mesic-arid connections in quail-thrush.Crossref | GoogleScholarGoogle Scholar | 22040766PubMed |
Webb, J. A., and James, J. M. (2006). Karst evolution of the Nullarbor Plain, Australia. In ‘Perspectives on Karst Geomorphology, Hydrology, and Geochemistry – A Tribute Volume to Derek C. Ford and William B. White’. Geological Society of America Special Paper 404. (Eds R. S. Harmon and C. Wicks.) pp. 65–78. (Geological Society of America: Washington, DC.)
Weir, J. T. (2006). Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds. Evolution 60, 842–855.
| Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds.Crossref | GoogleScholarGoogle Scholar | 16739464PubMed |
Wheeler, Q. D., and Meier, R. (Eds) (2000). ‘Species Concepts and Phylogenetic Theory. A Debate.’ (Columbia University Press: New York.)
Williams, L. (1986). Vegetation of the Great Victoria Desert: structural analysis. In ‘The Great Victoria Desert’. (Eds P. Greenslade, L. Joseph and R. Barley.) pp. 14–32. (Nature Conservation Society of South Australia: Adelaide.)
Wooller, R. D., Saunders, D. A., Bradley, J. S., and de Rebeira, C. P. (1985). Geographical variation in size of an Australian honeyeater (Aves : Meliphagidae): an example of Bergmann’s rule. Biological Journal of the Linnean Society 25, 355–363.
| Geographical variation in size of an Australian honeyeater (Aves : Meliphagidae): an example of Bergmann’s rule.Crossref | GoogleScholarGoogle Scholar |
Wright, T., Schirtzinger, E., Eberhard, J., Graves, G., Sanchez, J., Capelli, S., Muller, H., Scharpegge, J., Chambers, G., and Fleischer, R. (2008). A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous. Molecular Biology and Evolution 25, 2141–2156.
| A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1ektbjE&md5=890166618d526cb74fc11a3fcef2c80eCAS | 18653733PubMed |
Zink, R. M. (2005). Natural selection on mitochondrial DNA in Parus and its relevance for phylogeographic studies. Proceedings of the Royal Society of London – B. Biological Sciences 272, 71–78.
| Natural selection on mitochondrial DNA in Parus and its relevance for phylogeographic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1yms78%3D&md5=cb1653b34d8af9868f313be4e748636cCAS |
Zink, R. M., and Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology 17, 2107–2121.
| Mitochondrial DNA under siege in avian phylogeography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVeksbk%3D&md5=9e77f914cd6475de0b43f89603fd4b4cCAS | 18397219PubMed |