Register      Login
Emu Emu Society
Journal of BirdLife Australia
REVIEW

The Maluridae: inferring avian biology and evolutionary history from DNA sequences

Leo Joseph A D , Scott V. Edwards B and Alison J. McLean C
+ Author Affiliations
- Author Affiliations

A Australian National Wildlife Collection, CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia.

B Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.

C Griffith University, Australian Rivers Institute, Griffith School of Environment, 170 Kessels Road, Nathan, Qld 4111, Australia.

D Corresponding author. Email: leo.joseph@csiro.au

Emu 113(3) 195-207 https://doi.org/10.1071/MU12081
Submitted: 21 September 2012  Accepted: 10 January 2013   Published: 15 August 2013

Abstract

The Australo-Papuan fairy-wrens, emu-wrens and grasswrens comprise the passerine family Maluridae. They have long been known for their spectacular plumages, remarkable behavioural ecology and intriguing biogeography. The family has provided an ideal model with which to explore how phylogenetic and phylogeographic analyses of DNA-sequence data can inform understanding of evolutionary history and present-day biology. We review what has been learned of the phylogeny of the group and the phylogeographic history of individual species. We conclude that there is now a strong framework within which to pursue the remaining species-level taxonomic issues, and to extend ecological and behavioural studies into a new era of more detailed genetic questions such as the role of gene–environment interactions in adaptation. We highlight some remaining examples of such questions and discuss how they might be addressed.


References

Austin, J., Joseph, L., Pedler, L., and Black, A. (2013). Uncovering cryptic evolutionary diversity in extant and extinct populations of the southern Australian arid zone Western and Thick-billed Grasswrens (Paseriformes: Maluridae: Amytornis). Conservation Genetics , .
Uncovering cryptic evolutionary diversity in extant and extinct populations of the southern Australian arid zone Western and Thick-billed Grasswrens (Paseriformes: Maluridae: Amytornis).Crossref | GoogleScholarGoogle Scholar |

Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J., Reeb, C. A., and Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489–522.

Balakrishnan, C. N., Lee, J. Y., and Edwards, S. V. (2010). Phylogeography and phylogenetics in the nuclear age. In ‘In Search of the Causes of Evolution: From Field Observations to Mechanisms’. (Eds P. Grant and R. Grant.) pp. 65–88. (Princeton University Press: Princeton, NJ.)

Barker, F. K., Barrowclough, G. F., and Groth, J. G. (2002). A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proceedings of the Royal Society of London – B. Biological Sciences 269, 295–308.
A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFCiurc%3D&md5=0a0a9ba66d8dbe7e2f4bd969e3a9ba07CAS |

Barker, F. K., Cibois, A., Schikler, P., Feinstein, J., and Cracraft, J. (2004). Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences of the United States of America 101, 11 040–11 045.
Phylogeny and diversification of the largest avian radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVCmt7k%3D&md5=43be8013611d2c143440ea2ddb28299aCAS |

Black, A. B. (2004). The ‘Immarna’ grasswrens of R. C. Chandler: locality, habitat, identity and taxonomic implications. South Australian Ornithologist 34, 199–211.

Black, A. B. (2011a). Subspecies of the Thick-billed Grasswren Amytornis modestus (Aves–Maluridae). Transactions of the Royal Society of South Australia 135, 26–38.

Black, A. B. (2011b). Western Australia, home of the Grass-Wren (Amytornis textilis). Amytornis 3, 1–12.

Black, A., Carpenter, G., and Pedler, L. (2009). Distribution and habitats of the Thick-billed Grasswren Amytornis textilis subspecies myall. South Australian Ornithologist 35, 161–177.

Black, A. B., Joseph, L., Pedler, L. P., and Carpenter, G. A. (2010). A taxonomic framework for interpreting evolution within the Amytornis textilis–modestus complex of grasswrens. Emu 110, 358–363.
A taxonomic framework for interpreting evolution within the Amytornis textilis–modestus complex of grasswrens.Crossref | GoogleScholarGoogle Scholar |

Brito, P., and Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135, 439–455.
Multilocus phylogeography and phylogenetics using sequence-based markers.Crossref | GoogleScholarGoogle Scholar | 18651229PubMed |

Byrne, M., Yeates, D., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K.-H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=0173dff59083bb7b190c0b9cc9f48865CAS | 18761619PubMed |

Caparroz, R., Miyaki, C., and Baker, A. (2009). Contrasting phylogeographic patterns in mitochondrial DNA and microsatellites: evidence of female philopatry and male-biased gene flow among regional populations of the Blue-and-yellow Macaw (Psittaciformes: Ara ararauna) in Brazil. Auk 126, 359–370.
Contrasting phylogeographic patterns in mitochondrial DNA and microsatellites: evidence of female philopatry and male-biased gene flow among regional populations of the Blue-and-yellow Macaw (Psittaciformes: Ara ararauna) in Brazil.Crossref | GoogleScholarGoogle Scholar |

Chivas, A. R., Garcia, A., and van der Kaars, S. (2001). Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview. Quaternary International 83–85, 19–46.
Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview.Crossref | GoogleScholarGoogle Scholar |

Christidis, L. (1999). Evolution and biogeography of the Australian grasswrens Amytornis (Aves : Maluridae). Australian Journal of Zoology 47, 113–124.
Evolution and biogeography of the Australian grasswrens Amytornis (Aves : Maluridae).Crossref | GoogleScholarGoogle Scholar |

Christidis, L., and Schodde, R. (1997). Relationships within the Australo-Papuan fairywrens (Aves : Malurinae): an evaluation of the utility of allozyme data. Australian Journal of Zoology 45, 113–129.
Relationships within the Australo-Papuan fairywrens (Aves : Malurinae): an evaluation of the utility of allozyme data.Crossref | GoogleScholarGoogle Scholar |

Christidis, L., Horton, P., and Norman, J. A. (2008). Subspeciation in the Short-tailed Grasswren (Amytornis merrotsyi, Maluridae). Emu 108, 275–282.
Subspeciation in the Short-tailed Grasswren (Amytornis merrotsyi, Maluridae).Crossref | GoogleScholarGoogle Scholar |

Christidis, L., Rheindt, F. E., Boles, W. E., and Norman, J. A. (2010). Plumage patterns are good indicators of taxonomic diversity, but not of phylogenetic affinities, in Australian grasswrens Amytornis (Aves : Maluridae). Molecular Phylogenetics and Evolution 57, 868–877.
Plumage patterns are good indicators of taxonomic diversity, but not of phylogenetic affinities, in Australian grasswrens Amytornis (Aves : Maluridae).Crossref | GoogleScholarGoogle Scholar | 20816977PubMed |

Cracraft, J. (1991). Patterns of diversification within continental biotas: hierarchical congruence among the areas of endemism of Australian vertebrates. Australian Systematic Botany 4, 211–227.
Patterns of diversification within continental biotas: hierarchical congruence among the areas of endemism of Australian vertebrates.Crossref | GoogleScholarGoogle Scholar |

Condon, H. T. (1951). Notes on the birds of South Australia: occurrence, distribution and taxonomy. South Australian Ornithologist 20, 26–68.

Cook, B. D., Adams, M., Mather, P., and Hughes, J. (2012). Statistical phylogeographic tests of competing ‘Lake Carpentaria hypotheses’ in the mouth-brooding freshwater fish, Glossamia aprion (Apogonidae). Marine and Freshwater Research 63, 450–456.
Statistical phylogeographic tests of competing ‘Lake Carpentaria hypotheses’ in the mouth-brooding freshwater fish, Glossamia aprion (Apogonidae).Crossref | GoogleScholarGoogle Scholar |

Cracraft, J. (1986). Origin and evolution of continental biotas: speciation and historical congruence within the Australian avifauna. Evolution 40, 977–996.
Origin and evolution of continental biotas: speciation and historical congruence within the Australian avifauna.Crossref | GoogleScholarGoogle Scholar |

Cracraft, J., and Feinstein, J. (2000). What is not a bird of paradise? Molecular and morphological evidence places Macgregoria in the Meliphagidae and the Cnemophilinae near the base of the corvoid tree. Proceedings of the Royal Society of London – B. Biological Sciences 267, 233–241.
What is not a bird of paradise? Molecular and morphological evidence places Macgregoria in the Meliphagidae and the Cnemophilinae near the base of the corvoid tree.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7nslemuw%3D%3D&md5=a7d9a1da5e7d149329c3aca4e06581a1CAS |

D’Horta, F. M., Cabanne, G. S., Meyer, D., and Miyaki, C. Y. (2011). The genetic effects of Late Quaternary climatic changes over a tropical latitudinal gradient: diversification of an Atlantic Forest passerine. Molecular Ecology 20, 1923–1935.
The genetic effects of Late Quaternary climatic changes over a tropical latitudinal gradient: diversification of an Atlantic Forest passerine.Crossref | GoogleScholarGoogle Scholar | 21410807PubMed |

de Bruyn, M., Wilson, J. C., and Mather, P. B. (2004). Reconciling geography and genealogy: phylogeography of giant freshwater prawns from the Lake Carpentaria region. Molecular Ecology 13, 3515–3526.
Reconciling geography and genealogy: phylogeography of giant freshwater prawns from the Lake Carpentaria region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWkurnI&md5=5e6a8c51d7f99753517888cddd4a0b34CAS | 15488008PubMed |

Dolman, G., and Joseph, L. (2012). A species assemblage approach to comparative phylogeography of birds in southern Australia. Ecology and Evolution 2, 354–369.
A species assemblage approach to comparative phylogeography of birds in southern Australia.Crossref | GoogleScholarGoogle Scholar | 22423329PubMed |

Dolman, G., and Moritz, C. (2006). A multi-locus perspective on refugial isolation and divergence in rainforest skinks (Carlia). Evolution 60, 573–582.
| 1:CAS:528:DC%2BD28Xmt12jurs%3D&md5=05053233fc3986985f4e91d26fed26b0CAS | 16637502PubMed |

Donnellan, S. C., Armstrong, J., Pickett, M., Milne, T., Baulderstone, J., Hollfelder, T., and Bertozzi, T. (2009). Systematic and conservation implications of mitochondrial DNA diversity in emu-wrens, Stipiturus (Aves : Maluridae). Emu 109, 143–152.
Systematic and conservation implications of mitochondrial DNA diversity in emu-wrens, Stipiturus (Aves : Maluridae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKgt7k%3D&md5=de19ec5c62fa632467f95099da60bdc1CAS |

Double, M. C., Peakall, R., Beck, N. R., and Cockburn, A. (2005). Dispersal, philopatry, and infidelity: dissecting local genetic structure in Superb Fairy-wrens (Malurus cyaneus). Evolution 59, 625–635.
| 1:CAS:528:DC%2BD2MXjsV2ltrg%3D&md5=c4ea7dcc60703d043129cb7c61f0eaa5CAS | 15856704PubMed |

Doucet, S. M., Shawkey, M. D., Rathburn, M. K., Mays, H. L., and Montgomerie, R. (2004). Concordant evolution of plumage colour, feather microstructure and a melanocortin receptor gene between mainland and island populations of a fairy-wren. Proceedings of the Royal Society of London – B. Biological Sciences 271, 1663–1670.
Concordant evolution of plumage colour, feather microstructure and a melanocortin receptor gene between mainland and island populations of a fairy-wren.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2cvgtlSktg%3D%3D&md5=1d0e0e352d7e4b652ca0578fa98a4a1cCAS |

Driskell, A. C., Pruett-Jones, S., Tarvin, K. A., and Hagevik, S. (2002). Evolutionary relationships among blue- and black-plumaged populations of the White-winged Fairy-wren (Malurus leucopterus). Australian Journal of Zoology 50, 581–595.
Evolutionary relationships among blue- and black-plumaged populations of the White-winged Fairy-wren (Malurus leucopterus).Crossref | GoogleScholarGoogle Scholar |

Driskell, A. C., Prum, R. O., and Pruett-Jones, S. (2010). The evolution of black plumage from blue in Australian fairy-wrens (Maluridae): genetic and structural evidence. Journal of Avian Biology 41, 505–514.
The evolution of black plumage from blue in Australian fairy-wrens (Maluridae): genetic and structural evidence.Crossref | GoogleScholarGoogle Scholar |

Driskell, A. C., Norman, J. A., Pruett-Jones, S., Mangall, E., Sonsthagen, S., and Christidis, L. (2011). A multigene phylogeny examining evolutionary and ecological relationships in the Australo-Papuan wrens of the subfamily Malurinae (Aves). Molecular Phylogenetics and Evolution 60, 480–485.
A multigene phylogeny examining evolutionary and ecological relationships in the Australo-Papuan wrens of the subfamily Malurinae (Aves).Crossref | GoogleScholarGoogle Scholar | 21466855PubMed |

Dudaniec, R., Schlotfeldt, B., Bertozzi, T., Donnellan, S. C., and Kleindorfer, S. (2011). Genetic and morphological divergence in island and mainland birds: informing conservation priorities. Biological Conservation 144, 2902–2912.
Genetic and morphological divergence in island and mainland birds: informing conservation priorities.Crossref | GoogleScholarGoogle Scholar |

Edwards, S. V. (1993). Long-distance gene flow in a cooperative breeder detected in genealogies of mitochondrial DNA sequences. Proceedings of the Royal Society of London – B. Biological Sciences 252, 177–185.
Long-distance gene flow in a cooperative breeder detected in genealogies of mitochondrial DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsF2gsbw%3D&md5=8a543aa89dc0af6a11e882bbbcf89901CAS |

Edwards, S. V. (2009). Is a new and general theory of molecular systematics emerging? Evolution 63, 1–19.
Is a new and general theory of molecular systematics emerging?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVKgtbs%3D&md5=bebbac44aa007a9b7a8c2d1906391dd2CAS | 19146594PubMed |

Edwards, D. L., Roberts, J. D., and Keogh, J. S. (2007). Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog. Molecular Ecology 16, 2782–2796.
Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog.Crossref | GoogleScholarGoogle Scholar | 17594447PubMed |

Edwards, S. V., Cameron Devitt, S., and Fujita, M. (2012). Phylogeography. In ‘Encyclopedia of Theoretical Ecology’. (Eds A. Hastings and L. Gross.) pp. 557–565. (University of California Press: Berkeley, CA.)

Endler, J. A. (1993). The colour of light in forests and its implications. Ecological Monographs 63, 1–27.
The colour of light in forests and its implications.Crossref | GoogleScholarGoogle Scholar |

Ericson P. G. P. Christidis L. Cooper A. Irestedt M., Jackson J. Johansson U. S. Norman J. A. 2002 A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceedings of the Royal Society of London – B. Biological Sciences 269 235 241

Ford, J. (1966). Taxonomy and variation of the chestnut-shouldered wrens of Western Australia. Emu 66, 47–57.
Taxonomy and variation of the chestnut-shouldered wrens of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Ford, J. (1974). Speciation in Australian birds adapted to arid habitats. Emu 74, 161–168.
Speciation in Australian birds adapted to arid habitats.Crossref | GoogleScholarGoogle Scholar |

Ford, J. (1987). Minor isolates and minor geographical barriers in avian speciation in continental Australia. Emu 87, 90–102.
Minor isolates and minor geographical barriers in avian speciation in continental Australia.Crossref | GoogleScholarGoogle Scholar |

Ford, J., and Johnstone, R. E. (1991). Hybridisation between Malurus lamberti rogersi and Malurus lamberti assimilis in north-western Australia. Emu 91, 251–254.
Hybridisation between Malurus lamberti rogersi and Malurus lamberti assimilis in north-western Australia.Crossref | GoogleScholarGoogle Scholar |

Gardner, J. L., Trueman, J. W. H., Ebert, D., Joseph, L., and Magrath, R. D. (2010). Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. Molecular Phylogenetics and Evolution 55, 1087–1102.
Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds.Crossref | GoogleScholarGoogle Scholar | 20152917PubMed |

Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28, 1140–1162.
Mating systems, philopatry and dispersal in birds and mammals.Crossref | GoogleScholarGoogle Scholar |

Gutiérrez-Pinto, N., Cuervo, A. M., Miranda, J., Perez-Eman, J. L., Brumfield, R. T., and Cadena, C. D. (2012). Non-monophyly and deep genetic differentiation across low-elevation barriers in a Neotropical montane bird (Basileuterus tristriatus; Aves : Parulidae). Molecular Phylogenetics and Evolution 64, 156–165.
Non-monophyly and deep genetic differentiation across low-elevation barriers in a Neotropical montane bird (Basileuterus tristriatus; Aves : Parulidae).Crossref | GoogleScholarGoogle Scholar | 22484358PubMed |

Harrison, C. J. O. (1972). A re-examination of the chestnut-shouldered wren complex of Australia. Bulletin of the British Museum of Natural History (Zoology) 21, 313–328.

Hewitt, G. M. (2004). Genetics consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 359, 183–195.
Genetics consequences of climatic oscillations in the Quaternary.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c3gsVSjuw%3D%3D&md5=a92cef35c88bb6eee6e56c160e7d1e65CAS |

Higgins, P. J., Peter, J. M., and Steele, W. K. (2001). Handbook of Australian, New Zealand and Antarctic Birds. Tyrant-flycatchers to Chats, vol. 5. (Oxford University Press: Melbourne.)

Hopper, S., and Gioia, P. (2004). The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology Evolution and Systematics 35, 623–650.
The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Jennings, W. B., and Edwards, S. V. (2005). Speciational history of Australian grass finches (Poephila) inferred from thirty gene trees. Evolution 59, 2033–2047.
| 1:CAS:528:DC%2BD2MXhtFGiurnM&md5=7fb5fa2d163e425af89aa9ea1395c000CAS | 16261740PubMed |

Johnson, N. K., and Cicero, C. (2004). New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds. Evolution 58, 1122–1130.
| 15212392PubMed |

Joseph, L., and Omland, K. E. (2009). Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds. Emu 109, 1–23.
Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds.Crossref | GoogleScholarGoogle Scholar |

Joseph, L., Moritz, C., and Hugall, A. (1995). Molecular support for vicariance as a source of diversity in rainforest. Proceedings of the Royal Society of London. Series B, Biological Sciences 260, 177–182.
Molecular support for vicariance as a source of diversity in rainforest.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2Mzgtlyruw%3D%3D&md5=ec7ab3849085b2d68c50bedaffcce645CAS |

Kearns, A. M., Joseph, L., Edwards, S. V., and Double, M. C. (2009). Inferring the phylogeography and evolutionary history of the Splendid Fairy-wren Malurus splendens from mitochondrial DNA and spectrophotometry. Journal of Avian Biology 40, 7–17.
Inferring the phylogeography and evolutionary history of the Splendid Fairy-wren Malurus splendens from mitochondrial DNA and spectrophotometry.Crossref | GoogleScholarGoogle Scholar |

Kearns, A., Joseph, L., and Cook, L. (2010). The impact of Pleistocene climatic and landscape changes on Australian birds: a test using the Pied Butcherbird (Cracticus nigrogularis). Emu 110, 285–295.
The impact of Pleistocene climatic and landscape changes on Australian birds: a test using the Pied Butcherbird (Cracticus nigrogularis).Crossref | GoogleScholarGoogle Scholar |

Kearns, A. M., Joseph, L., Omland, K., and Cook, L. (2011). Testing the effect of transient Plio-Pleistocene barriers in monsoonal Australo-Papua: did mangrove habitats maintain genetic connectivity in the Black Butcherbird? Molecular Ecology 20, 5042–5059.
Testing the effect of transient Plio-Pleistocene barriers in monsoonal Australo-Papua: did mangrove habitats maintain genetic connectivity in the Black Butcherbird?Crossref | GoogleScholarGoogle Scholar | 22060632PubMed |

Keast, J. A. (1958). Speciation in the genus Amytornis Stejneger (Passeres : Muscicapidae, Malurinae) in Australia. Australian Journal of Zoology 6, 33–52.
Speciation in the genus Amytornis Stejneger (Passeres : Muscicapidae, Malurinae) in Australia.Crossref | GoogleScholarGoogle Scholar |

Keast, J. A. (1961). Bird speciation on the Australian continent. Bulletin of the Museum of Comparative Zoology, Harvard 123, 303–495.

Kingma, S. A., Hall, M., Segelbacher, G., and Peters, A. (2009). Radical loss of an extreme extra-pair mating system. BMC Ecology 9, 15.
Radical loss of an extreme extra-pair mating system.Crossref | GoogleScholarGoogle Scholar | 19454026PubMed |

Kleindorfer, S., Evans, C., Mihailova, M., Colombelli-Négrel, D., Hoi, H., Griggio, M., Mahr, K., and Robertson, J. (2013). When subspecies matter: resident Superb Fairy-wrens (Malurus cyaneus) distinguish the sex and subspecies of intruder birds. Emu 113, 259–269.
When subspecies matter: resident Superb Fairy-wrens (Malurus cyaneus) distinguish the sex and subspecies of intruder birds.Crossref | GoogleScholarGoogle Scholar |

Klicka, J., and Zink, R. M. (1999). Pleistocene phylogeographic effects on avian evolution. Proceedings of the Royal Society of London – B. Biological Sciences 266, 695–700.
Pleistocene phylogeographic effects on avian evolution.Crossref | GoogleScholarGoogle Scholar |

Ladiges, P., Parra-O., C., Gibbs, A., Udovicic, F., Nelson, G., and Bayly, M. (2011). Historical biogeographical patterns in continental Australia: congruence among areas of endemism of two major clades of eucalypts. Cladistics 27, 29–41.
Historical biogeographical patterns in continental Australia: congruence among areas of endemism of two major clades of eucalypts.Crossref | GoogleScholarGoogle Scholar |

Ladiges, P., Bayly, M., and Nelson, G. (2012). Searching for ancestral areas and artifactual centers of origin in biogeography: with comment on east–west patterns across southern Australia. Systematic Biology 61, 703–708.
Searching for ancestral areas and artifactual centers of origin in biogeography: with comment on east–west patterns across southern Australia.Crossref | GoogleScholarGoogle Scholar | 22234419PubMed |

LeCroy, M., and Diamond, J. (1995). Plumage variation in the Broad-billed Fairy-wren. Emu 95, 185–193.
Plumage variation in the Broad-billed Fairy-wren.Crossref | GoogleScholarGoogle Scholar |

Lee, J. Y., and Edwards, S. V. (2008). Divergence across Australia’s Carpentarian Barrier: statistical phylogeography of the Red-backed Fairy wren (Malurus melanocephalus). Evolution 62, 3117–3134.
Divergence across Australia’s Carpentarian Barrier: statistical phylogeography of the Red-backed Fairy wren (Malurus melanocephalus).Crossref | GoogleScholarGoogle Scholar | 19087188PubMed |

Lee, J. Y., Joseph, L., and Edwards, S. V. (2012). A species tree for the Australo-Papuan fairywrens and allies. Systematic Biology 61, 253–271.
A species tree for the Australo-Papuan fairywrens and allies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xisl2rtrs%3D&md5=3cd893c139eec0786bace47be542f437CAS | 21978990PubMed |

Liu, L. (2008). BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24, 2542–2543.
BEST: Bayesian estimation of species trees under the coalescent model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gtb3J&md5=b2e876eb38a595400836cab4bfbac9beCAS | 18799483PubMed |

Lovette, I. (2004). Mitochondrial dating and mixed support for the ‘2% rule’ in birds. Auk 121, 1–6.

Mack, G. (1934). A revision of the genus Malurus. Memoirs of the National Museum Melbourne 8, 100–125.

McLean, A. J., Toon, A., Schmidt, D. J., Joseph, L., and Hughes, J. M. (2012). Speciation in chestnut-shouldered fairy-wrens (Malurus spp.) and rapid phenotypic divergence in Variegated Fairy-wrens (Malurus lamberti): a multilocus approach. Molecular Phylogenetics and Evolution 63, 668–678.
Speciation in chestnut-shouldered fairy-wrens (Malurus spp.) and rapid phenotypic divergence in Variegated Fairy-wrens (Malurus lamberti): a multilocus approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vntlymug%3D%3D&md5=5b92748292a38ef170fdb5c2d65dc718CAS | 22426434PubMed |

Miller, M. J., Bermingham, E., Klicka, J., Escalante, P., and Winker, K. (2010). Neotropical birds show a humped distribution of within-population genetic diversity along a latitudinal transect. Ecology Letters 13, 576–586.
Neotropical birds show a humped distribution of within-population genetic diversity along a latitudinal transect.Crossref | GoogleScholarGoogle Scholar | 20529101PubMed |

Mundy, N. I. (2005). A window on the genetics of evolution: MC1R and plumage colouration in birds. Proceedings of the Royal Society of London – B. Biological Sciences 272, 1633–1640.
A window on the genetics of evolution: MC1R and plumage colouration in birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSnsbvF&md5=0f5b89142dc538d0130ddbdef34c62cdCAS |

Mundy, N. I., Badcock, N. S., Hart, T., Scribner, K., Janssen, K., and Nadeau, N. J. (2004). Conserved genetic basis of a quantitative plumage trait involved in mate choice. Science 303, 1870–1873.
Conserved genetic basis of a quantitative plumage trait involved in mate choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFehurs%3D&md5=3c50859e8d007adeca327a7cb0a8d5cfCAS | 15031505PubMed |

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=bd107594bcba5ae1447591a2ba86d552CAS | 10706275PubMed |

Nicholls, J. A., and Austin, J. J. (2005). Phylogeography of an east Australian wet-forest bird, the Satin Bowerbird (Ptilonorhynchus violaceus), derived from mtDNA, and its relationship to morphology. Molecular Ecology 14, 1485–1496.
Phylogeography of an east Australian wet-forest bird, the Satin Bowerbird (Ptilonorhynchus violaceus), derived from mtDNA, and its relationship to morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktleqsLY%3D&md5=3ccfa9dfc65f355b29959fe80c64d86fCAS | 15813786PubMed |

Odeen, A., Pruett-Jones, S., Driskell, A. C., Armenta, J. K., and Hastad, O. (2012). Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proceedings of the Royal Society of London – B. Biological Sciences 279, 1269–1276.
Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration.Crossref | GoogleScholarGoogle Scholar |

Parker, S. A. (1972). Remarks on the distribution and taxonomy of the grasswrens Amytornis textilis, modestus and purnelli. Emu 72, 157–166.
Remarks on the distribution and taxonomy of the grasswrens Amytornis textilis, modestus and purnelli.Crossref | GoogleScholarGoogle Scholar |

Parker, S. A. (1982). Notes on Amytornis striatus merrotsyi Mellor, a subspecies of the Striated Grasswren inhabiting the Flinders Ranges. South Australian Ornithologist 29, 13–16.

Parker, S. A., May, I., and Head, W. (1978). Some observations on the Eyrean Grasswren Amytornis goyderi (Gould, 1875). Records of the South Australian Museum 17, 361–371.

Pavlova, A., Walker, F. M., van der Ree, R., Cesarini, S., and Taylor, A. C. (2010). Threatened populations of the Australian Squirrel Glider (Petaurus norfolcensis) show evidence of evolutionary distinctiveness on a Late Pleistocene timescale. Conservation Genetics 11, 2393–2407.
Threatened populations of the Australian Squirrel Glider (Petaurus norfolcensis) show evidence of evolutionary distinctiveness on a Late Pleistocene timescale.Crossref | GoogleScholarGoogle Scholar |

Pavlova, A., Amos, J. N., Joseph, L., Loynes, K., Austin, J., Keogh, J. S., Stone, G. N., Nicholls, J. A., and Sunnucks, P. (2013). Perched at the cyto-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird. Evolution , .
Perched at the cyto-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird.Crossref | GoogleScholarGoogle Scholar |

Rheindt, F., and Edwards, S. V. (2011). Genetic introgression: an integral but neglected component of speciation in birds. Auk 128, 620–632.
Genetic introgression: an integral but neglected component of speciation in birds.Crossref | GoogleScholarGoogle Scholar |

Rollins, L. A., Svedin, N., Pryke, S. R., and Griffith, S. C. (2012). The role of the Ord Arid Intrusion in the historical and contemporary genetic division of Long-tailed Finch subspecies in northern Australia. Ecology and Evolution 2, 1208–1219.
The role of the Ord Arid Intrusion in the historical and contemporary genetic division of Long-tailed Finch subspecies in northern Australia.Crossref | GoogleScholarGoogle Scholar | 22833795PubMed |

Ronquist, F. (2004). Bayesian inference of character evolution. Trends in Ecology & Evolution 19, 475–481.
Bayesian inference of character evolution.Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=15122cb52d66de37595c1e41a3018e68CAS | 12912839PubMed |

Rowley, I. (2001). [Introduction to] Family Maluridae Australopapuan fairy-wrens, emu-wrens and grasswrens. In ‘Handbook of Australian, New Zealand and Antarctic Birds. Tyrant-flycatchers to Chats. Volume 5’. (Eds P. J. Higgins, J. M. Peter and W. K. Steele) pp 257–260. (Oxford University Press, Melbourne).

Rowley, I., and Russell, E. (1997). ‘Fairy-wrens and Grasswrens Maluridae.’ (Oxford University Press: New York.)

Rowley, I., and Russell, E. (2007). Family Maluridae (Fairy-wrens). In ‘Handbook of the Birds of the World. Vol. 12: Picathartes to Tits and Chickadees’. (Eds J. del Hoyo, A. Elliott and D. A. Christie.) pp. 490–531. (Lynx Edicions: Barcelona.)

Schlotfeldt, B. E., and Kleindorfer, S. (2006). Adaptive divergence in the Superb Fairy-wren (Malurus cyaneus): a mainland versus island comparison of morphology and foraging behaviour. Emu 106, 309–319.
Adaptive divergence in the Superb Fairy-wren (Malurus cyaneus): a mainland versus island comparison of morphology and foraging behaviour.Crossref | GoogleScholarGoogle Scholar |

Schneider, C. J., Cunningham, M., and Moritz, C. (1998). Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia. Molecular Ecology 7, 487–498.
Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia.Crossref | GoogleScholarGoogle Scholar |

Schodde, R. (1975). ‘Interim List of Australian Birds. Passerines.’ (Royal Australasian Ornithologists Union: Melbourne.)

Schodde, R. (1982). ‘The Fairy-Wrens: A Monograph of the Maluridae.’ (Lansdowne Editions: Melbourne.)

Schodde, R., and Mason, I. J. (1999). ‘The Directory of Australian Birds: Passerines.’ (CSIRO Publishing: Melbourne.)

Sibley, C. G., and Ahlquist, J. E. (1990). ‘Phylogeny and Classification of Birds: A Study in Molecular Evolution.’ (Yale University Press: New Haven.)

Skroblin, A., and Legge, S. (2010). The distribution and status of the western subspecies of the Purple-crowned Fairy-wren (Malurus coronatus coronatus). Emu 110, 339–347.
The distribution and status of the western subspecies of the Purple-crowned Fairy-wren (Malurus coronatus coronatus).Crossref | GoogleScholarGoogle Scholar |

Theron, E., Hawkins, K., Bermingham, E., Ricklefs, R. E., and Mundy, N. I. (2001). The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the Bananaquit, Coereba flaveola. Current Biology 11, 550–557.
The molecular basis of an avian plumage polymorphism in the wild: a melanocortin-1-receptor point mutation is perfectly associated with the melanic plumage morph of the Bananaquit, Coereba flaveola.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtlenurY%3D&md5=a0471d64bc1460aaf3695437b3e56821CAS | 11369199PubMed |

Toon, A., Mather, P. B., Baker, A. M., Durrant, K. L., and Hughes, J. M. (2007). Pleistocene refugia in an arid landscape: analysis of a widely distributed Australian passerine. Molecular Ecology 16, 2525–2541.
Pleistocene refugia in an arid landscape: analysis of a widely distributed Australian passerine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Whs7w%3D&md5=16b41bea510a620867e6f35fb5e283f0CAS | 17561911PubMed |

Toon, A., Hughes, J., and Joseph, L. (2010). Multilocus analysis of honeyeaters (Aves : Meliphagidae) highlights the spatio-temporal heterogeneity in the influence of biogeographic barriers in the Australian monsoonal zone. Molecular Ecology 19, 2980–2994.
Multilocus analysis of honeyeaters (Aves : Meliphagidae) highlights the spatio-temporal heterogeneity in the influence of biogeographic barriers in the Australian monsoonal zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVyktb3F&md5=06715fbb8405d2a1e630b5b1be9b6cfcCAS | 20609078PubMed |

Toon, A., Austin, J., Dolman, G., Pedler, L., and Joseph, L. (2012). Evolution of arid zone birds in Australia: leapfrog distribution patterns and mesic-arid connections in quail-thrush. Molecular Phylogenetics and Evolution 62, 286–295.
Evolution of arid zone birds in Australia: leapfrog distribution patterns and mesic-arid connections in quail-thrush.Crossref | GoogleScholarGoogle Scholar | 22040766PubMed |

Uy, J. A. C., Moyle, R. G., Filardi, C., and Cheviron, Z. A. (2009). Difference in plumage color used in species recognition between incipient species is linked to a single amino acid substitution in the melanocortin-1 receptor. American Naturalist 174, 244–254.
Difference in plumage color used in species recognition between incipient species is linked to a single amino acid substitution in the melanocortin-1 receptor.Crossref | GoogleScholarGoogle Scholar |

Weir, J. T., and Price, M. (2011). Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers. Molecular Ecology 20, 4550–4563.
Andean uplift promotes lowland speciation through vicariance and dispersal in Dendrocincla woodcreepers.Crossref | GoogleScholarGoogle Scholar | 21981112PubMed |

Weir, J. T., and Schluter, D. (2007). The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576.
The latitudinal gradient in recent speciation and extinction rates of birds and mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivVSnsbo%3D&md5=ac7c77ab79d3114ea9d0121efbc8337eCAS | 17363673PubMed |

Yu, Y., Harris, A. J., and He, X.-J. (2010). S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56, 848–850.
S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories.Crossref | GoogleScholarGoogle Scholar | 20399277PubMed |

Yu, Y., Harris, A. J., and He, X. J. (2011). ‘RASP (Reconstruct Ancestral State in Phylogenies) 2.0b.’ (Sichuan University: Chengdu, China.) Available at http://mnh.scu.edu.cn/soft/blog/RASP [Verified 18 September 2012].

Zink, R. M. (2010). Drawbacks with the use of microsatellites in phylogeography: the Song Sparrow Melospiza melodia as a case study. Journal of Avian Biology 41, 1–7.
Drawbacks with the use of microsatellites in phylogeography: the Song Sparrow Melospiza melodia as a case study.Crossref | GoogleScholarGoogle Scholar |

Zink, R. M., and Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology 17, 2107–2121.
Mitochondrial DNA under siege in avian phylogeography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVeksbk%3D&md5=63cc9ea637698d8e4504bb5de3b06d6fCAS | 18397219PubMed |