Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Age-related prey selectivity and foraging efficiency of Olrog’s Gulls (atlanticus) feeding on crabs in their non-breeding grounds

María Paula Berón A B D , Germán O. García A B , Tomás Luppi A C and Marco Favero A B
+ Author Affiliations
- Author Affiliations

A Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires, Argentina.

B Vertebrados, Departamento Biología, Universidad Nacional de Mar del Plata, Funes 3250, B7602AYJ, Mar del Plata, Argentina.

C Invertebrados, Departamento Biología, Universidad Nacional de Mar del Plata, Funes 3250, B7602AYJ, Mar del Plata, Argentina.

D Corresponding author. Email: mpberon@mdp.edu.ar, mpb03@yahoo.com.ar

Emu 111(2) 172-178 https://doi.org/10.1071/MU10053
Submitted: 26 June 2010  Accepted: 22 November 2010   Published: 27 May 2011

Abstract

Foraging ecology is an essential component of the life history of a species and a good understanding of foraging ecology is especially important for threatened species where prey populations may be adversely affected by anthropogenic processes. This study examines age-related prey selection and prey-handling efficiency of Olrog’s Gulls (Larus atlanticus) during the non-breeding season at the Mar Chiquita Coastal Lagoon, Argentina. Foraging behaviour and diet were determined by focal observation and compared with the availability of prey within their foraging patches. All captured prey were crabs, with the Burrowing Crab (Neohelice granulata) more commonly taken than the Mud Crab (Cyrtograpsus angulatus). Gulls consumed small and medium-sized crabs in higher proportions than those available and consumed more male crabs. Juvenile Gulls had longer handling times than older birds. Handling times increased with size of crabs independently of the sex of prey. The handling efficiency of adults was significantly higher than that of subadults, which in turn was higher than that of juveniles. These differences between age-classes could be attributed to differential foraging skills and social subordination of juvenile Gulls. The reasons for avoidance of large crabs is not certain but might be because carapaces are not easily digested, there is a higher risk of injury, or capture of large crabs may result in more intense kleptoparasitic interactions, among others.

Additional keywords: Argentina, handling efficiency, predator–prey interactions.


References

Altmann, J. (1974). Observational study of behavior: sampling methods. Behaviour 49, 227–267.
Observational study of behavior: sampling methods.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c7mtlWmsQ%3D%3D&md5=880f5e75d37de2cc12b981edd6d4672dCAS | 4597405PubMed |

Berón, M. P., and Favero, M. (2009). Mortality of Olrog’s Gulls Larus atlanticus associated with sport fishing activities. Hornero 24, 99–102.

Berón, M. P., and Favero, M. (2010). Diet of Olrog’s Gull (Larus atlanticus) in the Mar Chiquita Coastal Lagoon (Buenos Aires, Argentina) during non-breeding period. Ornitologia Neotropical 21, 215–224.

Berón, M. P., Favero, M., and Gómez Laich, A. (2007). Use of natural and anthropogenic resources by the Olrog’s Gull Larus atlanticus: implications for the conservation of the species in nonbreeding habitats. Bird Conservation International 17, 351–357.
Use of natural and anthropogenic resources by the Olrog’s Gull Larus atlanticus: implications for the conservation of the species in nonbreeding habitats.Crossref | GoogleScholarGoogle Scholar |

Bertellotti, M., and Yorio, P. (2000). Age-related feeding behaviour and foraging efficiency in Kelp Gulls Larus dominicanus attending coastal trawlers in Argentina. Ardea 88, 207–214.

Bertness, M. D. (1999). ‘The Ecology of Atlantic Shorelines.’ (Sinaur Associates: Sunderland, MA.)

Bildstein, K. L., McDowell, S. G., and Brisbin, I. L. (1989). Consequences of sexual dimorphism in sand fiddler crabs, Uca pugilator: differential vulnerability to avian predation. Animal Behaviour 37, 133–139.
Consequences of sexual dimorphism in sand fiddler crabs, Uca pugilator: differential vulnerability to avian predation.Crossref | GoogleScholarGoogle Scholar |

BirdLife International (2010). Olrog’s Gull Larus atlanticus. BirdLife International, Cambridge, UK. Available at http://.birdlife.org/datazone/speciesfactsheet.php?id=3210 [Verified 15 May 2011].

Boschi, E. E. (1964). Los crustáceos decápodos Brachyura del litoral bonaerense (R Argentina). Boletín Instituto de Biología Marina. Mar del Plata 6, 1–99.

Burger, J. (1987). Foraging efficiency in gulls: a congeneric comparison of age differences in efficiency and age of maturity. Studies in Avian Biology 10, 83–90.

Burnham, K. P., and Anderson, D. R. (1998). ‘Model Selection and Inference: A Practical Information-Theoretic Approach.’ (Springer-Verlag: New York.)

Copello, S., and Favero, M. (2001). Foraging ecology of Olrog’s Gull Larus atlanticus in Mar Chiquita Lagoon (Buenos Aires, Argentina): are there age-related differences? Bird Conservation International 11, 175–188.
Foraging ecology of Olrog’s Gull Larus atlanticus in Mar Chiquita Lagoon (Buenos Aires, Argentina): are there age-related differences?Crossref | GoogleScholarGoogle Scholar |

Crawley, M. J. (2007). ‘The R Book.’ (Wiley: Chichester, UK.)

Delhey, J. K. V., Carrete, M., and Martínez, M. (2001). Diet and feeding behaviour of Olrog’s Gull Larus atlanticus in Bahía Blanca, Argentina. Ardea 89, 319–329.

Fleiss, J. L. (1973). ‘Statistical Methods for Rates and Proportions.’ (Wiley: New York.)

García, G. O., Favero, M., and Mariano-Jelicich, R. (2008). Red-gartered Coot Fulica armillata feeding on the grapsid crab Cyrtograpsus angulatus: advantages and disadvantages of an unusual food resource. Ibis 150, 110–114.
Red-gartered Coot Fulica armillata feeding on the grapsid crab Cyrtograpsus angulatus: advantages and disadvantages of an unusual food resource.Crossref | GoogleScholarGoogle Scholar |

García Borboroglu, P., and Yorio, P. (2007). Breeding habitat requirements and selection by the threatened Olrog’s Gull Larus atlanticus. Auk 124, 1201–1212.
Breeding habitat requirements and selection by the threatened Olrog’s Gull Larus atlanticus.Crossref | GoogleScholarGoogle Scholar |

Gochfeld, M., and Burger, J. (1981). Age-related differences in piracy of frigatebirds from Laughing Gulls. Condor 83, 79–82.
Age-related differences in piracy of frigatebirds from Laughing Gulls.Crossref | GoogleScholarGoogle Scholar |

Gomez, A., Pereira, J., and Bugoni, L. (2009). Age-specific diving and foraging behavior of the Great Grebe (Podicephorus major). Waterbirds 32, 149–156.
Age-specific diving and foraging behavior of the Great Grebe (Podicephorus major).Crossref | GoogleScholarGoogle Scholar |

Harrison, P. (1983). ‘Seabirds: an Identification Guide.’ (Houghton Mifflin: Boston, MA.)

Herrera, G., Punta, G., and Yorio, P. (2005). Diet specialization of Olrog’s Gull Larus atlanticus during the breeding season at Golfo San Jorge, Argentina. Bird Conservation International 15, 89–97.
Diet specialization of Olrog’s Gull Larus atlanticus during the breeding season at Golfo San Jorge, Argentina.Crossref | GoogleScholarGoogle Scholar |

Koga, T., Backwell, R. Y., Christy, J. H., Murai, M., and Kasuyas, E. (2001). Male-biased predation of a fiddler crab. Animal Behaviour 62, 201–207.
Male-biased predation of a fiddler crab.Crossref | GoogleScholarGoogle Scholar |

Krebs, J. R., and Davies, N. B. (1993). Economic decisions and the individual. In ‘An Introduction to Behavioural Ecology’. (Eds J. R. Krebs and N. B. Davies.) pp. 48–76. (Blackwell Scientific Publications: London.)

Limmer, B., and Becker, P. (2009). Improvement in chick provisioning with parental experience in a seabird. Animal Behaviour 77, 1095–1101.
Improvement in chick provisioning with parental experience in a seabird.Crossref | GoogleScholarGoogle Scholar |

MacArthur, R. H., and Pianka, E. R. (1966). On optimal use of a patchy environment. American Naturalist 100, 603–609.
On optimal use of a patchy environment.Crossref | GoogleScholarGoogle Scholar |

Magnhagen, C. (1991). Predation risk as a cost of reproduction. Trends in Ecology & Evolution 6, 183–186.
Predation risk as a cost of reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7hsVegtQ%3D%3D&md5=19cbbe5dfbbee32b53a9b0eccdd1490fCAS | 21232452PubMed |

Martin, P., and Bateson, P. (1994). ‘Measuring Behaviour, an Introductory Guide.’ (Cambridge University Press: Cambridge, UK.)

McLean, A. E. (1986). Age-specific foraging ability and the evolution of deferred breeding in three species of gulls. Wilson Bulletin 98, 267–279.

O’Brien, E. L., Burger, A. E., and Dawson, R. D. (2005). Foraging decision rules and prey species preferences of Northwestern Crows (Corvus caurinus). Ethology 111, 77–87.
Foraging decision rules and prey species preferences of Northwestern Crows (Corvus caurinus).Crossref | GoogleScholarGoogle Scholar |

Papakostas, G., Kazantzidis, S., Goutner, V., and Charalambidou, I. (2005). Factors affecting the foraging behavior of the Squacco Heron. Waterbirds 28, 28–34.
Factors affecting the foraging behavior of the Squacco Heron.Crossref | GoogleScholarGoogle Scholar |

R Development Core Team (2008). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.)

Snellen, C. L., Hodum, P. J., and Fernández-Juricic, E. (2007). Assessing Western Gull predation on purple sea urchins in the rocky intertidal using optimal foraging theory. Canadian Journal of Zoology 85, 221–231.
Assessing Western Gull predation on purple sea urchins in the rocky intertidal using optimal foraging theory.Crossref | GoogleScholarGoogle Scholar |

Spivak, E., and Sánchez, N. (1992). Prey selection by Larus belcheri atlanticus in Mar Chiquita Lagoon, Buenos Aires, Argentina: a possible explanation for its discontinuous distribution. Revista Chilena de Historia Natural (Valparaiso, Chile) 65, 209–220.

Steele, W. K., and Hockey, P. A. R. (1995). Factors influencing rate and success of intraspecific kleptoparasitism among Kelp Gulls (Larus dominicanus). Auk 112, 847–859.

Stienen, E. W. M., Brenninkmeijer, A., and Klaassen, M. (2008). Why do Gull-billed Terns Gelochelidon nilotica feed on fiddler crabs Uca tangeri in Guinea-Bissau? Ardea 96, 243–250.
Why do Gull-billed Terns Gelochelidon nilotica feed on fiddler crabs Uca tangeri in Guinea-Bissau?Crossref | GoogleScholarGoogle Scholar |

Underwood, A. J. (1997). ‘Experiments in Ecology. Their Logical Design and Interpretation Using Analisys of Variance.’ (Cambridge University Press: Cambridge, UK.)

Van de Kam, J., Ens, B., Piersma, T., and Zwartz, L. (2004). Food. In ‘Shorebirds: an Illustrated Behavioural Ecology’. (Eds J. Van de Kam, B. Ens, T. Piersma and L. Zwartz.) pp. 147–230. (KNNV Publishers: Utrecht, the Netherlands.)

Yorio, P., Bertellotti, M., and García Borboroglu, P. (2005). Estado poblacional y de conservación de gaviotas que se reproducen en el Litoral marítimo Argentino. Hornero 20, 53–74.

Zar, J. H. (1999). ‘Biostatistical Analysis’. 4th edn. (Prentice-Hall Inc.: Englewood Cliffs, NJ.)