Register      Login
Emu Emu Society
Journal of BirdLife Australia
REVIEW

Towards modelling persistence of woodland birds: the role of genetics

Paul Sunnucks
+ Author Affiliations
- Author Affiliations

School of Biological Sciences and Australian Centre for Biodiversity, Monash University, Clayton, VIC 3800, Australia. Email: paul.sunnucks@monash.edu

Emu 111(1) 19-39 https://doi.org/10.1071/MU10008
Submitted: 11 February 2010  Accepted: 17 May 2010   Published: 21 February 2011

Abstract

Assessing how environmental change affects the probability of persistence of organisms requires an understanding of dispersal through, and occupation of, landscapes, and the associated demographic outcomes. Projections of differences in persistence probability can then be made under different scenarios of land-use and global environmental change. Rates and distances of dispersal, and demographic change and trajectories, are difficult to measure accurately, but genetic approaches can make major contributions. For two decades the field of molecular ecology has been providing useful life-history information relevant to population management, including key ecological attributes such as disease-resistance and thermal biology, mobility, dispersal and gene flow, habitat connectivity, the spatial and temporal scales of population processes, and demography. Genetic estimators of these factors could be employed to a much greater extent than they are currently. To facilitate this increased use, genetic estimates of functional connectivity (mobility and gene flow of organisms) and demography need to be integrated directly into decision-making processes. Population genetics is well suited to Bayesian approaches, with associated benefits including the ability to consider many factors, and estimation of error and parameter sensitivities. Genetic estimators based on the mobility and reproductive success of individual organisms and their key ecological traits can make unique contributions alongside other types of data into agent-based, spatially explicit modelling approaches of real landscape scenarios at the range of scales needed by managers. Virtually all the tools to do this exist. It is imperative that genetic samples be collected for contemporary and future analyses.


References

Abbott, C. L., Double, M. C., Gales, R., Baker, G. B., Lashko, A., Robertson, C. J. R., and Ryan, P. G. (2006). Molecular provenance analysis for Shy and White-capped Albatrosses killed by fisheries interactions in Australia, New Zealand, and South Africa. Conservation Genetics 7, 531–542.
Molecular provenance analysis for Shy and White-capped Albatrosses killed by fisheries interactions in Australia, New Zealand, and South Africa.Crossref | GoogleScholarGoogle Scholar |

Abdelkrim, J., Pascal, M., Calmet, C., and Samadi, S. (2005). Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations. Conservation Biology 19, 1509–1518.
Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations.Crossref | GoogleScholarGoogle Scholar |

Abdelkrim, J., Robertson, B. C., Stanton, J. A. L., and Gemmell, N. J. (2009). Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. BioTechniques 46, 185–192.
Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtlGguro%3D&md5=013897dcc251b863e87de64c816532b4CAS | 19317661PubMed |

Allen, G. E., and Dytham, C. (2009). An efficient method for stochastic simulation of biological populations in continuous time. Bio Systems 98, 37–42.
An efficient method for stochastic simulation of biological populations in continuous time.Crossref | GoogleScholarGoogle Scholar | 19607876PubMed |

Allendorf, F., and Luikart, G. (2007). ‘Conservation and the Genetics of Populations.’ (Wiley-Blackwell: Malden, MA.)

Alter, S. E., Rynes, E., and Palumbi, S. R. (2007). DNA evidence for historic population size and past ecosystem impacts of gray whales. Proceedings of the National Academy of Sciences of the United States of America 104, 15 162–15 167.
DNA evidence for historic population size and past ecosystem impacts of gray whales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2ju7rO&md5=e3b8a2f18078eac2e0fe5e857046006aCAS |

Axelsson, E., Hultin-Rosenberg, L., Brandstrom, M., Zwahlen, M., Clayton, D. F., and Ellegren, H. (2008). Natural selection in avian protein-coding genes expressed in brain. Molecular Ecology 17, 3008–3017.
Natural selection in avian protein-coding genes expressed in brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVWhu7s%3D&md5=131ccdb144607886e1d2a6a575e89c9fCAS | 18482257PubMed |

Backström, N., Fagerberg, S., and Ellegren, H. (2008). Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Molecular Ecology 17, 964–980.
Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome.Crossref | GoogleScholarGoogle Scholar | 17927703PubMed |

Baker, A. M., Mather, P. B., and Hughes, J. M. (2000). Population genetic structure of Australian Magpies: evidence for regional differences in juvenile dispersal behaviour. Heredity 85, 167–176.
Population genetic structure of Australian Magpies: evidence for regional differences in juvenile dispersal behaviour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsFChtr0%3D&md5=0b080173c91441a3ddc541a88e66f0beCAS | 11012719PubMed |

Balakrishnan, C. N., and Edwards, S. V. (2009). Nucleotide variation, linkage disequilibrium and founder-facilitated speciation in wild populations of the Zebra Finch (Taeniopygia guttata). Genetics 181, 645–660.
Nucleotide variation, linkage disequilibrium and founder-facilitated speciation in wild populations of the Zebra Finch (Taeniopygia guttata).Crossref | GoogleScholarGoogle Scholar | 19047416PubMed |

Balkenhol, N., and Waits, L. P. (2009). Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Molecular Ecology 18, 4151–4164.
Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife.Crossref | GoogleScholarGoogle Scholar | 19732335PubMed |

Balkenhol, N., Gugerli, F., Cushman, S. A., Waits, L. P., Coulon, A., Arntzen, J. W., Holderegger, R., and Wagner, H. H. (2009a). Identifying future research needs in landscape genetics: where to from here? Landscape Ecology 24, 455–463.
Identifying future research needs in landscape genetics: where to from here?Crossref | GoogleScholarGoogle Scholar |

Balkenhol, N., Waits, L. P., and Dezzani, R. J. (2009b). Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32, 818–830.
Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data.Crossref | GoogleScholarGoogle Scholar |

Balloux, F. (2001). EASYPOP (version 1.7): a computer program for population genetics simulations. Journal of Heredity 92, 301–302.
EASYPOP (version 1.7): a computer program for population genetics simulations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mzpt1eiug%3D%3D&md5=a44d07d0c0ec062581e3fdffa41b92b6CAS | 11447253PubMed |

Banks, S. C., Hoyle, S. D., Horsup, A., Sunnucks, P., and Taylor, A. C. (2003). Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material. Animal Conservation 6, 101–107.
Demographic monitoring of an entire species (the northern hairy-nosed wombat, Lasiorhinus krefftii) by genetic analysis of non-invasively collected material.Crossref | GoogleScholarGoogle Scholar |

Barr, K. R., Lindsay, D. L., Athrey, G., Lance, R. F., Hayden, T. J., Tweddale, S. A., and Leberg, P. L. (2008). Population structure in an endangered songbird: maintenance of genetic differentiation despite high vagility and significant population recovery. Molecular Ecology 17, 3628–3639.
Population structure in an endangered songbird: maintenance of genetic differentiation despite high vagility and significant population recovery.Crossref | GoogleScholarGoogle Scholar | 18643883PubMed |

Beadell, J. S., Gering, E., Austin, J., Dumbacher, J. P., Peirce, M. A., Pratt, T. K., Atkinson, C. T., and Fleischer, R. C. (2004). Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Molecular Ecology 13, 3829–3844.
Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region.Crossref | GoogleScholarGoogle Scholar | 15548295PubMed |

Bean, M. J. (2009). The Endangered Species Act: science, policy, and politics. Annals of the New York Academy of Sciences 1162, 369–391.
The Endangered Species Act: science, policy, and politics.Crossref | GoogleScholarGoogle Scholar | 19432657PubMed |

Beaumont, M. A. (1999). Detecting population expansion and decline using microsatellites. Genetics 153, 2013–2029.
| 1:STN:280:DC%2BD3c%2FltVKqsQ%3D%3D&md5=879b7b16a5e3b4b048f1709cf16bb67fCAS | 10581303PubMed |

Beaumont, M. A., and Rannala, B. (2004). The Bayesian revolution in genetics. Nature Reviews. Genetics 5, 251–261.
The Bayesian revolution in genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVartLw%3D&md5=03f7ec4894fcf5f1074112a93f29cb91CAS | 15131649PubMed |

Beck, N. R., Peakall, R., and Heinsohn, R. (2008). Social constraint and an absence of sex-biased dispersal drive fine-scale genetic structure in white-winged choughs. Molecular Ecology 17, 4346–4358.
Social constraint and an absence of sex-biased dispersal drive fine-scale genetic structure in white-winged choughs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyisrvO&md5=23a2e8a732e8058c33746a57d5fe8832CAS | 19378407PubMed |

Beckman, J., Banks, S. C., Sunnucks, P., Lill, A., and Taylor, A. C. (2007). Phylogeography and environmental correlates of a cap on reproduction: teat number in a small marsupial, Antechinus agilis. Molecular Ecology 16, 1069–1083.
Phylogeography and environmental correlates of a cap on reproduction: teat number in a small marsupial, Antechinus agilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksVykt7o%3D&md5=36c89ce31f1d732f368f0dd5297b1546CAS | 17305861PubMed |

Beerli, P. (2006). Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22, 341–345.
Comparison of Bayesian and maximum-likelihood inference of population genetic parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFaisbo%3D&md5=035e56807abf7e5308d186994a4dfd97CAS | 16317072PubMed |

Beerli, P., and Felsenstein, J. (2001). Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences of the United States of America 98, 4563–4568.
Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVagtLY%3D&md5=8a04eb4c956ce250bd71e6d998a523beCAS | 11287657PubMed |

Bekessy, S. A., Wintle, B. A., Gordon, A., Fox, J. C., Chisholm, R., Brown, B., Regan, T., Mooney, N., Read, S. M., and Burgman, M. A. (2009). Modelling human impacts on the Tasmanian Wedge-tailed Eagle (Aquila audax fleayi). Biological Conservation 142, 2438–2448.
Modelling human impacts on the Tasmanian Wedge-tailed Eagle (Aquila audax fleayi).Crossref | GoogleScholarGoogle Scholar |

Bennett, A. F., Radford, J. Q., and Haslem, A. (2006). Properties of land mosaics: implications for nature conservation in agricultural environments. Biological Conservation 133, 250–264.
Properties of land mosaics: implications for nature conservation in agricultural environments.Crossref | GoogleScholarGoogle Scholar |

Bernatchez, L., and Duchesne, P. (2000). Individual-based genotype analysis in studies of parentage and population assignment: how many loci, how many alleles? Canadian Journal of Fisheries and Aquatic Sciences 57, 1–12.
Individual-based genotype analysis in studies of parentage and population assignment: how many loci, how many alleles?Crossref | GoogleScholarGoogle Scholar |

Berry, O., Tocher, M. D., and Sarre, S. D. (2004). Can assignment tests measure dispersal? Molecular Ecology 13, 551–561.
Can assignment tests measure dispersal?Crossref | GoogleScholarGoogle Scholar | 14871360PubMed |

Biek, R., Drummond, A. J., and Poss, M. (2006). A virus reveals population structure and recent demographic history of its carnivore host. Science 311, 538–541.
A virus reveals population structure and recent demographic history of its carnivore host.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVymug%3D%3D&md5=0fc78bc3675394aefe6a28625a50fd4fCAS | 16439664PubMed |

Biro, P. A., Post, J. R., and Booth, D. J. (2007). Mechanisms for climate-induced mortality of fish populations in whole-lake experiments. Proceedings of the National Academy of Sciences of the United States of America 104, 9715–9719.
Mechanisms for climate-induced mortality of fish populations in whole-lake experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsFSms7o%3D&md5=bb74dbbf52a06b8d7b65b9634ec4ce05CAS | 17535908PubMed |

Bouzat, J. L., Cheng, H. H., Lewin, H. A., Westemeier, R. L., Brawn, J. D., and Paige, K. N. (1998a). Genetic evaluation of a demographic bottleneck in the Greater Prairie Chicken. Conservation Biology 12, 836–843.
Genetic evaluation of a demographic bottleneck in the Greater Prairie Chicken.Crossref | GoogleScholarGoogle Scholar |

Bouzat, J. L., Lewin, H. A., and Paige, K. N. (1998b). The ghost of genetic diversity past: historical DNA analysis of the Greater Prairie Chicken. American Naturalist 152, 1–6.
The ghost of genetic diversity past: historical DNA analysis of the Greater Prairie Chicken.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnit1yktA%3D%3D&md5=608db0b2a804bd0a6afc3d870470be45CAS | 18811397PubMed |

Bowen, M. E., McAlpine, C. A., Seabrook, L. M., House, A. P. N., and Smith, G. C. (2009). The age and amount of regrowth forest in fragmented brigalow landscapes are both important for woodland dependent birds. Biological Conservation 142, 3051–3059.
The age and amount of regrowth forest in fragmented brigalow landscapes are both important for woodland dependent birds.Crossref | GoogleScholarGoogle Scholar |

Brattström, O., Wassenaar, L. I., Hobson, K. A., and Akesson, S. (2008). Placing butterflies on the map – testing regional geographical resolution of three stable isotopes in Sweden using the monophagus Peacock Inachis io. Ecography 31, 490–498.
Placing butterflies on the map – testing regional geographical resolution of three stable isotopes in Sweden using the monophagus Peacock Inachis io.Crossref | GoogleScholarGoogle Scholar |

Broquet, T., and Petit, E. J. (2009). Molecular estimation of dispersal for ecology and population genetics. Annual Review of Ecology Evolution and Systematics 40, 193–216.
Molecular estimation of dispersal for ecology and population genetics.Crossref | GoogleScholarGoogle Scholar |

Bruggeman, D. J., Jones, M. L., Scribner, K., and Lupi, F. (2009). Relating tradable credits for biodiversity to sustainability criteria in a dynamic landscape. Landscape Ecology 24, 775–790.
Relating tradable credits for biodiversity to sustainability criteria in a dynamic landscape.Crossref | GoogleScholarGoogle Scholar |

Burke, T., and Bruford, M. W. (1987). DNA fingerprinting in birds. Nature 327, 149–152.
DNA fingerprinting in birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXktFyktbY%3D&md5=1f5a433b871dd10335a0ff9f101a1433CAS | 3574475PubMed |

Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T., and Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789.
Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlersb0%3D&md5=ba940b7935b5cfea52215fb83c0f313eCAS | 19197066PubMed |

Chen, C., Durand, E., Forbes, F., and Francois, O. (2007). Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes 7, 747–756.
Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study.Crossref | GoogleScholarGoogle Scholar |

Clark, J. S. (2005). Why environmental scientists are becoming Bayesians. Ecology Letters 8, 2–14.
Why environmental scientists are becoming Bayesians.Crossref | GoogleScholarGoogle Scholar |

Clayton, D. F. (2004). Songbird genomics – methods, mechanisms, opportunities, and pitfalls. Annals of the New York Academy of Sciences 1016, 45–60.
| 1:CAS:528:DC%2BD2cXms12msro%3D&md5=dcf20bb05e8aa72ae53e00836b6f1781CAS | 15313769PubMed |

Clegg, S. M., Degnan, S. M., Moritz, C., Estoup, A., Kikkawa, J., and Owens, I. P. F. (2002). Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird. Evolution 56, 2090–2099.
| 12449495PubMed |

Cooper, C. B., and Walters, J. R. (2002). Experimental evidence of disrupted dispersal causing decline of an Australian passerine in fragmented habitat. Conservation Biology 16, 471–478.
Experimental evidence of disrupted dispersal causing decline of an Australian passerine in fragmented habitat.Crossref | GoogleScholarGoogle Scholar |

Cooper, C. B., Walters, J. R., and Priddy, J. (2002a). Landscape patterns and dispersal success: simulated population dynamics in the Brown Treecreeper. Ecological Applications 12, 1576–1587.
Landscape patterns and dispersal success: simulated population dynamics in the Brown Treecreeper.Crossref | GoogleScholarGoogle Scholar |

Cooper, C. B., Walters, J. R., and Ford, H. (2002b). Effects of remnant size and connectivity on the response of Brown Treecreepers to habitat fragmentation. Emu 102, 249–256.
Effects of remnant size and connectivity on the response of Brown Treecreepers to habitat fragmentation.Crossref | GoogleScholarGoogle Scholar |

Coulon, A., Fitzpatrick, J. W., Bowman, R., and Lovette, I. J. (2010). Effects of habitat fragmentation on effective dispersal of Florida Scrub-jays. Conservation Biology 24, 1080–1088.
| 20151985PubMed |

Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M., and Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15, 290–295.
Considering evolutionary processes in conservation biology.Crossref | GoogleScholarGoogle Scholar |

Cullingham, C. I., Pond, B. A., Kyle, C. J., Rees, E. E., Rosatte, R. C., and White, B. N. (2008). Combining direct and indirect genetic methods to estimate dispersal for informing wildlife disease management decisions. Molecular Ecology 17, 4874–4886.
Combining direct and indirect genetic methods to estimate dispersal for informing wildlife disease management decisions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FmvFWhtQ%3D%3D&md5=5b97aeed4d3743cf678664ca767e8e38CAS | 19140978PubMed |

Currat, M., Ray, N., and Excoffier, L. (2004). SPLATCHE: a program to simulate genetic diversity taking into account environmental heterogeneity. Molecular Ecology Notes 4, 139–142.
SPLATCHE: a program to simulate genetic diversity taking into account environmental heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Cushman, S. A., and McGarigal, K. (2004). Hierarchical analysis of forest bird species-environment relationships in the Oregon Coast Range. Ecological Applications 14, 1090–1105.
Hierarchical analysis of forest bird species-environment relationships in the Oregon Coast Range.Crossref | GoogleScholarGoogle Scholar |

Cushman, S. A., McKelvey, K. S., Hayden, J., and Schwartz, M. K. (2006). Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. American Naturalist 168, 486–499.
Gene flow in complex landscapes: testing multiple hypotheses with causal modeling.Crossref | GoogleScholarGoogle Scholar | 17004220PubMed |

Cushman, S. A., McKelvey, K. S., and Schwartz, M. K. (2009). Use of empirically derived source-destination models to map regional conservation corridors. Conservation Biology 23, 368–376.
Use of empirically derived source-destination models to map regional conservation corridors.Crossref | GoogleScholarGoogle Scholar | 19016821PubMed |

DeYoung, R. W., and Honeycutt, R. L. (2005). The molecular toolbox: genetic techniques in wildlife ecology and management. Journal of Wildlife Management 69, 1362–1384.
The molecular toolbox: genetic techniques in wildlife ecology and management.Crossref | GoogleScholarGoogle Scholar |

Doerr, V. A. J., Doerr, E. D., and Davies, M. J. (2011). Dispersal behaviour of Brown Treecreepers predicts functional connectivity for other woodland birds. Emu 111, 71–83.
Dispersal behaviour of Brown Treecreepers predicts functional connectivity for other woodland birds.Crossref | GoogleScholarGoogle Scholar |

Double, M. C., Peakall, R., Beck, N. R., and Cockburn, A. (2005). Dispersal, philopatry, and infidelity: dissecting local genetic structure in Superb Fairy-wrens (Malurus cyaneus). Evolution 59, 625–635.
| 1:CAS:528:DC%2BD2MXjsV2ltrg%3D&md5=01107781e89b7310d6b44df1153b3abeCAS | 15856704PubMed |

Drechsler, M., Frank, K., Hanski, I., O’Hara, R. B., and Wissel, C. (2003). Ranking metapopulation extinction risk: from patterns in data to conservation management decisions. Ecological Applications 13, 990–998.
Ranking metapopulation extinction risk: from patterns in data to conservation management decisions.Crossref | GoogleScholarGoogle Scholar |

Driscoll, D. A. (1999). Genetic neighbourhood and effective population size for two endangered frogs. Biological Conservation 88, 221–229.
Genetic neighbourhood and effective population size for two endangered frogs.Crossref | GoogleScholarGoogle Scholar |

Drummond, A. J., and Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214.
BEAST: Bayesian evolutionary analysis by sampling trees.Crossref | GoogleScholarGoogle Scholar | 17996036PubMed |

Duckworth, R. A., and Badyaev, A. V. (2007). Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proceedings of the National Academy of Sciences of the United States of America 104, 15 017–15 022.
Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyqt7nI&md5=08989e18dd13b50e1294a161b96bc2a2CAS |

Durrant, K. L., and Hughes, J. M. (2005). Differing rates of extra-group paternity between two populations of the Australian Magpie (Gymnorhina tibicen). Behavioral Ecology and Sociobiology 57, 536–545.
Differing rates of extra-group paternity between two populations of the Australian Magpie (Gymnorhina tibicen).Crossref | GoogleScholarGoogle Scholar |

Durrant, K. L., and Hughes, J. M. (2006). Are there correlates of male Australian Magpie Gymnorhina tibicen reproductive success in a population with high rates of extra-group paternity? Ibis 148, 313–320.
Are there correlates of male Australian Magpie Gymnorhina tibicen reproductive success in a population with high rates of extra-group paternity?Crossref | GoogleScholarGoogle Scholar |

Dyer, R. J. (2007). Powers of discerning: challenges to understanding dispersal processes in natural populations. Molecular Ecology 16, 4881–4882.
Powers of discerning: challenges to understanding dispersal processes in natural populations.Crossref | GoogleScholarGoogle Scholar | 17956553PubMed |

Dytham, C. (2009). Evolved dispersal strategies at range margins. Proceedings of the Royal Society of London. Series B: Biological Sciences 276, 1407–1413.
Evolved dispersal strategies at range margins.Crossref | GoogleScholarGoogle Scholar |

Epperson, B. K. (2005). Estimating dispersal from short distance spatial autocorrelation. Heredity 95, 7–15.
Estimating dispersal from short distance spatial autocorrelation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mvht1yktA%3D%3D&md5=51d39eb9a37e8803e2531df12e495b21CAS | 15931252PubMed |

Excoffier, L., and Heckel, G. (2006). Computer programs for population genetics data analysis: a survival guide. Nature Reviews. Genetics 7, 745–758.
Computer programs for population genetics data analysis: a survival guide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xps1ahsLk%3D&md5=56faf2db4f2a617ada9172fb23751f98CAS | 16924258PubMed |

Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes – application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=dfca668332472d6ed65cb1dab03b30cbCAS | 1644282PubMed |

Fahrig, L. (2007). Non-optimal animal movement in human-altered landscapes. Functional Ecology 21, 1003–1015.
Non-optimal animal movement in human-altered landscapes.Crossref | GoogleScholarGoogle Scholar |

Fallon, S. M. (2007). Genetic data and the listing of species under the US Endangered Species Act. Conservation Biology 21, 1186–1195.
Genetic data and the listing of species under the US Endangered Species Act.Crossref | GoogleScholarGoogle Scholar | 17883484PubMed |

Faubet, P., and Gaggiotti, O. E. (2008). A new Bayesian method to identify the environmental factors that influence recent migration. Genetics 178, 1491–1504.
A new Bayesian method to identify the environmental factors that influence recent migration.Crossref | GoogleScholarGoogle Scholar | 18245344PubMed |

Faubet, P., Waples, R. S., and Gaggiotti, O. E. (2007). Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Molecular Ecology 16, 1149–1166.
Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates.Crossref | GoogleScholarGoogle Scholar | 17391403PubMed |

Ford, H. A. (2011). The causes of decline of birds of eucalypt woodlands: advances in our knowledge over the last 10 years. Emu 111, 1–9.
The causes of decline of birds of eucalypt woodlands: advances in our knowledge over the last 10 years.Crossref | GoogleScholarGoogle Scholar |

Ford, H. A., Walters, J. R., Cooper, C. B., Debus, S. J. S., and Doerr, V. A. J. (2009). Extinction debt or habitat change? – Ongoing losses of woodland birds in north-eastern New South Wales, Australia. Biological Conservation 142, 3182–3190.
Extinction debt or habitat change? – Ongoing losses of woodland birds in north-eastern New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (1995). Effective population size/adult population size ratios in wildlife – a review. Genetical Research 66, 95–107.
Effective population size/adult population size ratios in wildlife – a review.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (1996). Relationship of genetic variation to population size in wildlife. Conservation Biology 10, 1500–1508.
Relationship of genetic variation to population size in wildlife.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (2005a). Genetics and extinction. Biological Conservation 126, 131–140.
Genetics and extinction.Crossref | GoogleScholarGoogle Scholar |

Frankham, R. (2005b). Stress and adaptation in conservation genetics. Journal of Evolutionary Biology 18, 750–755.
Stress and adaptation in conservation genetics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mzns1OgtA%3D%3D&md5=8ff7ce71841757b82d2db22c60b5009eCAS | 16033545PubMed |

Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002). ‘Introduction to Conservation Genetics.’ (Cambridge University Press: Cambridge, UK.)

Freeman-Gallant, C. R., Meguerdichian, M., Wheelwright, N. T., and Sollecito, S. V. (2003). Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird. Molecular Ecology 12, 3077–3083.
Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird.Crossref | GoogleScholarGoogle Scholar | 14629387PubMed |

Garant, D., Kruuk, L. E. B., Wilkin, T. A., McCleery, R. H., and Sheldon, B. C. (2005). Evolution driven by differential dispersal within a wild bird population. Nature 433, 60–65.
Evolution driven by differential dispersal within a wild bird population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovFeh&md5=52a9d6e99f985db8645e2abf5cf3add3CAS | 15635409PubMed |

Garant, D., Hadfield, J. D., Kruuk, L. E. B., and Sheldon, B. C. (2008). Stability of genetic variance and covariance for reproductive characters in the face of climate change in a wild bird population. Molecular Ecology 17, 179–188.
Stability of genetic variance and covariance for reproductive characters in the face of climate change in a wild bird population.Crossref | GoogleScholarGoogle Scholar | 18173500PubMed |

Gardner, J. L., Heinsohn, R., and Joseph, L. (2009). Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proceedings of the Royal Society of London. Series B. Biological Sciences 276, 3845–3852.
Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines.Crossref | GoogleScholarGoogle Scholar |

Garrick, R. C., Rowell, D. M., Simmons, C. S., Hillis, D. M., and Sunnucks, P. (2008). Fine-scale phylogeographic congruence despite demographic incongruence in two low-mobility saproxylic springtails. Evolution 62, 1103–1118.
Fine-scale phylogeographic congruence despite demographic incongruence in two low-mobility saproxylic springtails.Crossref | GoogleScholarGoogle Scholar | 18298648PubMed |

Garza, J. C., and Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10, 305–318.
Detection of reduction in population size using data from microsatellite loci.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvgvFSntg%3D%3D&md5=7d4101c3abb82b4ff8f4c8e7fd87cf84CAS | 11298947PubMed |

Geffen, E., Anderson, M. J., and Wayne, R. K. (2004). Climate and habitat barriers to dispersal in the highly mobile grey wolf. Molecular Ecology 13, 2481–2490.
Climate and habitat barriers to dispersal in the highly mobile grey wolf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsl2qsrw%3D&md5=45c588b918f0703cb9fee470620525e1CAS | 15245420PubMed |

Gilligan, D. M., Briscoe, D. A., and Frankham, R. (2005). Comparative losses of quantitative and molecular genetic variation in finite populations of Drosophila melanogaster. Genetical Research 85, 47–55.
Comparative losses of quantitative and molecular genetic variation in finite populations of Drosophila melanogaster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFOrtbY%3D&md5=3d9b4a171f9115c88b50cfe71c1834d2CAS | 16089035PubMed |

Goossens, B., Chikhi, L., Ancrenaz, M., Lackman-Ancrenaz, I., Andau, P., and Bruford, M. W. (2006). Genetic signature of anthropogenic population collapse in orang-utans. PLoS Biology 4, e25.
Genetic signature of anthropogenic population collapse in orang-utans.Crossref | GoogleScholarGoogle Scholar | 16417405PubMed |

Grueber, C. E., and Jamieson, I. G. (2008). Quantifying and managing the loss of genetic variation in a free-ranging population of Takahe through the use of pedigrees. Conservation Genetics 9, 645–651.
Quantifying and managing the loss of genetic variation in a free-ranging population of Takahe through the use of pedigrees.Crossref | GoogleScholarGoogle Scholar |

Guillot, G., Leblois, R., Coulon, A., and Frantz, A. C. (2009). Statistical methods in spatial genetics. Molecular Ecology 18, 4734–4756.
Statistical methods in spatial genetics.Crossref | GoogleScholarGoogle Scholar | 19878454PubMed |

Hadfield, J. D., Richardson, D. S., and Burke, T. (2006). Towards unbiased parentage assignment: combining genetic, behavioural and spatial data in a Bayesian framework. Molecular Ecology 15, 3715–3730.
Towards unbiased parentage assignment: combining genetic, behavioural and spatial data in a Bayesian framework.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OisLzJ&md5=840c1a097d186cceed31f7bf3ec187c9CAS | 17032269PubMed |

Hall, M. L., and Peters, A. (2009). Do male paternity guards ensure female fidelity in a duetting fairy-wren? Behavioral Ecology 20, 222–228.
Do male paternity guards ensure female fidelity in a duetting fairy-wren?Crossref | GoogleScholarGoogle Scholar |

Hansson, B., Bensch, S., and Hasselquist, D. (2004). Lifetime fitness of short- and long-distance dispersing Great Reed Warblers. Evolution 58, 2546–2557.
| 15612297PubMed |

Hardy, O. J., Charbonnel, N., Freville, H., and Heuertz, M. (2003). Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163, 1467–1482.
| 1:CAS:528:DC%2BD3sXjvVensb4%3D&md5=3a412da26e8f1e74ae99d648de804cb2CAS | 12702690PubMed |

Hartig, F., and Drechsler, M. (2009). Smart spatial incentives for market-based conservation. Biological Conservation 142, 779–788.
Smart spatial incentives for market-based conservation.Crossref | GoogleScholarGoogle Scholar |

Hastings, A. (1993). Complex interactions between dispersal and dynamics – lessons from coupled logistic equations. Ecology 74, 1362–1372.
Complex interactions between dispersal and dynamics – lessons from coupled logistic equations.Crossref | GoogleScholarGoogle Scholar |

Hedrick, P. W. (2005). A standardized genetic differentiation measure. Evolution 59, 1633–1638.
| 1:CAS:528:DC%2BD2MXhtVKlt7bO&md5=56962f72c1f3741b90ff8f4a27321586CAS | 16329237PubMed |

Hellborg, L., and Ellegren, H. (2004). Low levels of nucleotide diversity in mammalian Y chromosomes. Molecular Biology and Evolution 21, 158–163.
Low levels of nucleotide diversity in mammalian Y chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhvVKqs7c%3D&md5=d3fc42e39126f0e77ea0ebc18547eb09CAS | 14595096PubMed |

Heller, R., and Siegismund, H. R. (2009). Relationship between three measures of genetic differentiation G ST, D EST and G′ST: how wrong have we been? Molecular Ecology 18, 2080–2083.
Relationship between three measures of genetic differentiation G ST, D EST and GST: how wrong have we been?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MrisV2itA%3D%3D&md5=539ec3b3a62a0f1d703b98fde0540e10CAS | 19645078PubMed |

Hey, J., and Nielsen, R. (2004). Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167, 747–760.
Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1KntL8%3D&md5=01d7b6613f57f211000c9cae6f5df844CAS | 15238526PubMed |

Hillier, L. W., Miller, W., Birney, E., Warren, W., Hardison, R. C., Ponting, C. P., Bork, P., Burt, D. W., et al (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716.
Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGmtb7M&md5=751217a49821a3fe80ab04ab8ae1c216CAS | 15592404PubMed |

Hoffmann, A. A., and Daborn, P. J. (2007). Towards genetic markers in animal populations as biomonitors for human-induced environmental change. Ecology Letters 10, 63–76.
Towards genetic markers in animal populations as biomonitors for human-induced environmental change.Crossref | GoogleScholarGoogle Scholar | 17204118PubMed |

Hofreiter, M., and Stewart, J. (2009). Ecological change, range fluctuations and population dynamics during the Pleistocene. Current Biology 19, R584–R594.
Ecological change, range fluctuations and population dynamics during the Pleistocene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVCqs7o%3D&md5=ba370c0e1aa1b2d12a27d9bf160c8fc1CAS | 19640497PubMed |

Hogan, F. E., Cooke, R., Burridge, C. P., and Norman, J. A. (2008). Optimizing the use of shed feathers for genetic analysis. Molecular Ecology Resources 8, 561–567.
Optimizing the use of shed feathers for genetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFSksbs%3D&md5=0edad260f75f23b0c1559a6f76b6046aCAS |

Holderegger, R., and Wagner, H. H. (2008). Landscape genetics. Bioscience 58, 199–207.
Landscape genetics.Crossref | GoogleScholarGoogle Scholar |

Inger, R., and Bearhop, S. (2008). Applications of stable isotope analyses to avian ecology. Ibis 150, 447–461.
Applications of stable isotope analyses to avian ecology.Crossref | GoogleScholarGoogle Scholar |

Jackson, J. A., Patenaude, N. J., Carroll, E. L., and Baker, C. S. (2008). How few whales were there after whaling? Inference from contemporary mtDNA diversity. Molecular Ecology 17, 236–251.
How few whales were there after whaling? Inference from contemporary mtDNA diversity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c%2Fgs1OrtA%3D%3D&md5=8426ea24339d6861bb9065a8278bb86fCAS | 17892467PubMed |

Johnson, J. B., Peat, S. M., and Adams, B. J. (2009). Where’s the ecology in molecular ecology? Oikos 118, 1601–1609.
Where’s the ecology in molecular ecology?Crossref | GoogleScholarGoogle Scholar |

Jombart, T., Devillard, S., Dufour, A. B., and Pontier, D. (2008). Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101, 92–103.
Revealing cryptic spatial patterns in genetic variability by a new multivariate method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnt1eis7g%3D&md5=6327b54c09ac36788ae69732610660c2CAS | 18446182PubMed |

Joost, S., Bonin, A., Bruford, M. W., Despres, L., Conord, C., Erhardt, G., and Taberlet, P. (2007). A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Molecular Ecology 16, 3955–3969.
A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sngs1ejtQ%3D%3D&md5=96716ea497cdb460869376b7f851b021CAS | 17850556PubMed |

Jorde, P. E., and Ryman, N. (1995). Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics 139, 1077–1090.
| 1:STN:280:DyaK2M3ivFSguw%3D%3D&md5=65bf93c026281429861a907ce296a136CAS | 7713410PubMed |

Joseph, L., and Omland, K. E. (2009). Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds. Emu 109, 1–23.
Phylogeography: its development and impact in Australo-Papuan ornithology with special reference to paraphyly in Australian birds.Crossref | GoogleScholarGoogle Scholar |

Joseph, L., Dolman, G., Donnellan, S., Saint, K. M., Berg, M. L., and Bennett, A. T. D. (2008). Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots. Proceedings of the Royal Society of London. Series B. Biological Sciences 275, 2431–2440.
Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots.Crossref | GoogleScholarGoogle Scholar |

Karaiskou, N., Buggiotti, L., Leder, E., and Primmer, C. R. (2008). High degree of transferability of 86 newly developed Zebra Finch EST-linked microsatellite markers in 8 bird species. Journal of Heredity 99, 688–693.
High degree of transferability of 86 newly developed Zebra Finch EST-linked microsatellite markers in 8 bird species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1OisrvJ&md5=624eba4116b59251fdda9cab46a2f65aCAS | 18583388PubMed |

Kavanagh, R. P., Stanton, M. A., and Herring, M. W. (2007). Eucalypt plantings on farms benefit woodland birds in south-eastern Australia. Austral Ecology 32, 635–650.
Eucalypt plantings on farms benefit woodland birds in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Kearney, M., and Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12, 334–350.
Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges.Crossref | GoogleScholarGoogle Scholar | 19292794PubMed |

Kearney, M., Briscoe, N. J., Karoly, D. J., Porter, W. P., Norgate, M., and Sunnucks, P. (2010). Early emergence in a butterfly causally linked to anthropogenic warming. Biology Letters 6, 674–677.
Early emergence in a butterfly causally linked to anthropogenic warming.Crossref | GoogleScholarGoogle Scholar | 20236964PubMed |

Keller, L. F. (1998). Inbreeding and its fitness effects in an insular population of Song Sparrows (Melospiza melodia). Evolution 52, 240–250.
Inbreeding and its fitness effects in an insular population of Song Sparrows (Melospiza melodia).Crossref | GoogleScholarGoogle Scholar |

Keller, L. F., and Waller, D. M. (2002). Inbreeding effects in wild populations. Trends in Ecology & Evolution 17, 230–241.
Inbreeding effects in wild populations.Crossref | GoogleScholarGoogle Scholar |

Keller, L. F., Arcese, P., Smith, J. N. M., Hochachka, W. M., and Stearns, S. C. (1994). Selection against inbred Song Sparrows during a natural population bottleneck. Nature 372, 356–357.
Selection against inbred Song Sparrows during a natural population bottleneck.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlOrsbs%3D&md5=be2740ca2bdaf9e50d1071a9e66d2b52CAS | 7969492PubMed |

Keller, L. F., Jeffery, K. J., Arcese, P., Beaumont, M. A., Hochachka, W. M., Smith, J. N. M., and Bruford, M. W. (2001). Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society of London. Series B. Biological Sciences 268, 1387–1394.
Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mznt12gtg%3D%3D&md5=19d06bf53d93eed7e2de0dfdafbe621eCAS |

Kimball, R. T., Braun, E. L., Barker, F. K., Bowie, R. C. K., Braun, M. J., Chojnowski, J. L., Hackett, S. J., Han, K. L., et al (2009). A well-tested set of primers to amplify regions spread across the avian genome. Molecular Phylogenetics and Evolution 50, 654–660.
A well-tested set of primers to amplify regions spread across the avian genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitF2qtLs%3D&md5=2696c654d2e665e721d8f468e0e34f79CAS | 19084073PubMed |

Kingman, J. F. C. (1982). The coalescent. Stochastic Processes and their Applications 13, 235–248.
The coalescent.Crossref | GoogleScholarGoogle Scholar |

Knowles, L. L. (2009). Statistical phylogeography. Annual Review of Ecology Evolution and Systematics 40, 593–612.
Statistical phylogeography.Crossref | GoogleScholarGoogle Scholar |

Korsten, P., Mueller, J. C., Hermannstädter, C., Bouwman, K. M., Dingemanse, N. J., Drent, P. J., Liedvogel, M., Mattysen, E., et al (2010). Association between DRD4 gene polymorphism and personality variation in Great Tits: a test across four wild populations. Molecular Ecology 19, 832–843.
Association between DRD4 gene polymorphism and personality variation in Great Tits: a test across four wild populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFeku70%3D&md5=90a534eb0b252f19f0fcf71ef1c0aa8dCAS | 20070517PubMed |

Kuhner, M. K. (2009). Coalescent genealogy samplers: windows into population history. Trends in Ecology & Evolution 24, 86–93.
Coalescent genealogy samplers: windows into population history.Crossref | GoogleScholarGoogle Scholar |

Lada, H., Mac Nally, R., and Taylor, A. C. (2008). Distinguishing past from present gene flow along and across a river: the case of the carnivorous marsupial (Antechinus flavipes) on southern Australian floodplains. Conservation Genetics 9, 569–580.
Distinguishing past from present gene flow along and across a river: the case of the carnivorous marsupial (Antechinus flavipes) on southern Australian floodplains.Crossref | GoogleScholarGoogle Scholar |

Laikre, L., Nilsson, T., Primmer, C. R., Ryman, N., and Allendorf, F. W. (2009). Importance of genetics in the interpretation of favourable conservation status. Conservation Biology 23, 1378–1381.
Importance of genetics in the interpretation of favourable conservation status.Crossref | GoogleScholarGoogle Scholar | 20078637PubMed |

Landguth, E. L., and Cushman, S. A. (2010). CDPOP: a spatially explicit cost distance population genetics program. Molecular Ecology Resources 10, 156–161.
CDPOP: a spatially explicit cost distance population genetics program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ansLY%3D&md5=eab489535dde168922b90f174f5656c9CAS |

Langmore, N. E., Adcock, G. J., and Kilner, R. M. (2007). The spatial organization and mating system of Horsfield’s Bronze-Cuckoos, Chalcites basalis. Animal Behaviour 74, 403–412.
The spatial organization and mating system of Horsfield’s Bronze-Cuckoos, Chalcites basalis.Crossref | GoogleScholarGoogle Scholar |

Latch, E. K., Dharmarajan, G., Glaubitz, J. C., and Rhodes, O. E. (2006). Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conservation Genetics 7, 295–302.
Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation.Crossref | GoogleScholarGoogle Scholar |

Lee, J. Y., and Edwards, S. V. (2008). Divergence across Australia’s Carpentarian barrier: statistical phylogeography of the Red-backed Fairy-wren (Malurus melanocephalus). Evolution 62, 3117–3134.
Divergence across Australia’s Carpentarian barrier: statistical phylogeography of the Red-backed Fairy-wren (Malurus melanocephalus).Crossref | GoogleScholarGoogle Scholar | 19087188PubMed |

Lehtonen, P. K., Laaksonen, T., Artemyev, A. V., Belskii, E., Both, C., Bures, S., Bushuev, A. V., Krams, I., et al (2009). Geographic patterns of genetic differentiation and plumage colour variation are different in the Pied Flycatcher (Ficedula hypoleuca). Molecular Ecology 18, 4463–4476.
Geographic patterns of genetic differentiation and plumage colour variation are different in the Pied Flycatcher (Ficedula hypoleuca).Crossref | GoogleScholarGoogle Scholar | 19796331PubMed |

Levin, N., McAlpine, C., Phinn, S., Price, B., Pullar, D., Kavanagh, R. P., and Law, B. S. (2009). Mapping forest patches and scattered trees from SPOT images and testing their ecological importance for woodland birds in a fragmented agricultural landscape. International Journal of Remote Sensing 30, 3147–3169.
Mapping forest patches and scattered trees from SPOT images and testing their ecological importance for woodland birds in a fragmented agricultural landscape.Crossref | GoogleScholarGoogle Scholar |

Lodé, T., and Peltier, D. (2005). Genetic neighbourhood and effective population size in the endangered European mink Mustela lutreola. Biodiversity and Conservation 14, 251–259.
Genetic neighbourhood and effective population size in the endangered European mink Mustela lutreola.Crossref | GoogleScholarGoogle Scholar |

Lowe, W. H. (2009). What drives long-distance dispersal? A test of theoretical predictions. Ecology 90, 1456–1462.
What drives long-distance dispersal? A test of theoretical predictions.Crossref | GoogleScholarGoogle Scholar | 19569359PubMed |

Lowe, W. H., and Allendorf, F. W. (2010). What can genetics tell us about population connectivity? Molecular Ecology 19, 3038–3051.
What can genetics tell us about population connectivity?Crossref | GoogleScholarGoogle Scholar | 20618697PubMed |

Luikart, G., Ryman, N., Tallmon, D. A., Schwartz, M. K., and Allendorf, F. W. (2010). Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conservation Genetics 11, 355–373.
Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFOqsLc%3D&md5=d840f6e0e5ffa637078c94be32a0c279CAS |

Mac Nally, R., Bennett, A. F., Thomson, J. R., Radford, J. Q., Unmack, G., Horrocks, G., and Vesk, P. A. (2009). Collapse of an avifauna: climate change appears to exacerbate habitat loss and degradation. Diversity & Distributions 15, 720–730.
Collapse of an avifauna: climate change appears to exacerbate habitat loss and degradation.Crossref | GoogleScholarGoogle Scholar |

Manel, S., Schwartz, M. K., Luikart, G., and Taberlet, P. (2003). Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology & Evolution 18, 189–197.
Landscape genetics: combining landscape ecology and population genetics.Crossref | GoogleScholarGoogle Scholar |

Manel, S., Gaggiotti, O. E., and Waples, R. S. (2005). Assignment methods: matching biological questions with appropriate techniques. Trends in Ecology & Evolution 20, 136–142.
Assignment methods: matching biological questions with appropriate techniques.Crossref | GoogleScholarGoogle Scholar |

Markert, J. A., Grant, P. R., Grant, B. R., Keller, L. F., Coombs, J. L., and Petren, K. (2004). Neutral locus heterozygosity, inbreeding, and survival in Darwin’s ground finches (Geospiza fortis and G. scandens). Heredity 92, 306–315.
Neutral locus heterozygosity, inbreeding, and survival in Darwin’s ground finches (Geospiza fortis and G. scandens).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVWlu7k%3D&md5=c3c5b3d595e7b0a81a451d6f0c213a33CAS | 14735140PubMed |

McRae, B. H., and Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences of the United States of America 104, 19 885–19 890.
Circuit theory predicts gene flow in plant and animal populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFSqtg%3D%3D&md5=f8c9ef59e0957f2a2ea220d9120b9499CAS |

McRae, B. H., Schumaker, N. H., McKane, R. B., Busing, R. T., Solomon, A. M., and Burdick, C. A. (2008). A multi-model framework for simulating wildlife population response to land-use and climate change. Ecological Modelling 219, 77–91.
A multi-model framework for simulating wildlife population response to land-use and climate change.Crossref | GoogleScholarGoogle Scholar |

Miller, H. C., and Lambert, D. M. (2004). Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Molecular Ecology 13, 3709–3721.
Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGntA%3D%3D&md5=b27e81e1fc2d991c50efaeecc1d58187CAS | 15548285PubMed |

Murphy, S. A., Double, M. C., and Legge, S. M. (2007). The phylogeography of Palm Cockatoos, Probosciger aterrimus, in the dynamic Australo-Papuan region. Journal of Biogeography 34, 1534–1545.
The phylogeography of Palm Cockatoos, Probosciger aterrimus, in the dynamic Australo-Papuan region.Crossref | GoogleScholarGoogle Scholar |

Murphy, M. A., Evans, J. S., Cushman, S. A., and Storfer, A. (2008). Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies. Ecography 31, 685–697.
Representing genetic variation as continuous surfaces: an approach for identifying spatial dependency in landscape genetic studies.Crossref | GoogleScholarGoogle Scholar |

Naurin, S., Bensch, S., Hansson, B., Johansson, T., Clayton, D. F., Albrekt, A. S., von Schantz, T., and Hasselquist, D. (2008). A microarray for large-scale genomic and transcriptional analyses of the Zebra Finch (Taeniopygia guttata) and other passerines. Molecular Ecology Resources 8, 275–281.
A microarray for large-scale genomic and transcriptional analyses of the Zebra Finch (Taeniopygia guttata) and other passerines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjs1aru7c%3D&md5=a44c5d355ea0b1ab65eae10433f6f176CAS |

Neigel, J. E. (2002). Is F ST obsolete? Conservation Genetics 3, 167–173.
Is F ST obsolete?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFSns7g%3D&md5=58800a327aba2adbaa0fa9d89c93cba0CAS |

Nichols, R. A., Bruford, M. W., and Groombridge, J. J. (2001). Sustaining genetic variation in a small population: evidence from the Mauritius Kestrel. Molecular Ecology 10, 593–602.
Sustaining genetic variation in a small population: evidence from the Mauritius Kestrel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvFKgur8%3D&md5=943904126946117e2804b755708a13d2CAS | 11298971PubMed |

Nieminen, M., Singer, M. C., Fortelius, W., Schops, K., and Hanski, I. (2001). Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations. American Naturalist 157, 237–244.
Experimental confirmation that inbreeding depression increases extinction risk in butterfly populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1crjsVSrsA%3D%3D&md5=88d9973f70d5508c3dccf889f8c56eceCAS | 18707275PubMed |

Norgate, M., Chamings, J., Pavlova, A., Bull, J. K., Murray, N. D., and Sunnucks, P. (2009). Mitochondrial DNA indicates late Pleistocene divergence of populations of Heteronympha merope, an emerging model in environmental change biology. PLoS ONE 4, e7950.
Mitochondrial DNA indicates late Pleistocene divergence of populations of Heteronympha merope, an emerging model in environmental change biology.Crossref | GoogleScholarGoogle Scholar | 19956696PubMed |

O’Grady, J. J., Brook, B. W., Reed, D. H., Ballou, J. D., Tonkyn, D. W., and Frankham, R. (2006). Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biological Conservation 133, 42–51.
Realistic levels of inbreeding depression strongly affect extinction risk in wild populations.Crossref | GoogleScholarGoogle Scholar |

Okello, J. B. A., Wittemyer, G., Rasmussen, H. B., Arctander, P., Nyakaana, S., Douglas-Hamilton, I., and Siegismund, H. R. (2008). Effective population size dynamics reveal impacts of historic climatic events and recent anthropogenic pressure in African elephants. Molecular Ecology 17, 3788–3799.
Effective population size dynamics reveal impacts of historic climatic events and recent anthropogenic pressure in African elephants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cngtVKhug%3D%3D&md5=25ccc05167c48c5df6a6bd3dcb0a9e22CAS | 18643879PubMed |

Orell, M., Lahti, K., Koivula, K., Rytkonen, S., and Welling, P. (1999). Immigration and gene flow in a northern Willow Tit (Parus montanus) population. Journal of Evolutionary Biology 12, 283–295.
Immigration and gene flow in a northern Willow Tit (Parus montanus) population.Crossref | GoogleScholarGoogle Scholar |

Paetkau, D., Slade, R., Burden, M., and Estoup, A. (2004). Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology 13, 55–65.
Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1WksLY%3D&md5=8f42403e96004689260dd506a1ae4f28CAS | 14653788PubMed |

Painter, J. N., Crozier, R. H., Poiani, A., Robertson, R. J., and Clarke, M. F. (2000). Complex social organization reflects genetic structure and relatedness in the cooperatively breeding Bell Miner, Manorina melanophrys. Molecular Ecology 9, 1339–1347.
Complex social organization reflects genetic structure and relatedness in the cooperatively breeding Bell Miner, Manorina melanophrys.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M%2FgvF2nug%3D%3D&md5=3749a19f8daa92d1ed701f6702796cf7CAS | 10972773PubMed |

Palkovacs, E. P., Oppenheimer, A. J., Gladyshev, E., Toepfer, J. E., Amato, G., Chase, T., and Caccone, A. (2004). Genetic evaluation of a proposed introduction: the case of the Greater Prairie Chicken and the extinct Heath Hen. Molecular Ecology 13, 1759–1769.
Genetic evaluation of a proposed introduction: the case of the Greater Prairie Chicken and the extinct Heath Hen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFelurw%3D&md5=d97e28c057fe1d65c85fe8bd7d0b0344CAS | 15189201PubMed |

Palsbøll, P. J., Berube, M., and Allendorf, F. W. (2007). Identification of management units using population genetic data. Trends in Ecology & Evolution 22, 11–16.
Identification of management units using population genetic data.Crossref | GoogleScholarGoogle Scholar |

Palstra, F. P., and Ruzzante, D. E. (2008). Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Molecular Ecology 17, 3428–3447.
Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?Crossref | GoogleScholarGoogle Scholar | 19160474PubMed |

Paquette, S. R., and Lapointe, F. J. (2009). A statistical procedure to assess the significance level of barriers to gene flow. Journal of Genetics and Genomics 36, 685–693.
A statistical procedure to assess the significance level of barriers to gene flow.Crossref | GoogleScholarGoogle Scholar | 19932465PubMed |

Pavlacky, D. C., Goldizen, A. W., Prentis, P. J., Nicholls, J. A., and Lowe, A. J. (2009). A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird. Molecular Ecology 18, 2945–2960.
A landscape genetics approach for quantifying the relative influence of historic and contemporary habitat heterogeneity on the genetic connectivity of a rainforest bird.Crossref | GoogleScholarGoogle Scholar | 19549110PubMed |

Peakall, R., and Smouse, P. E. (2006). GenAlEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GenAlEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Pearse, D. E., and Crandall, K. A. (2004). Beyond F ST: analysis of population genetic data for conservation. Conservation Genetics 5, 585–602.
Beyond F ST: analysis of population genetic data for conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrtbnL&md5=32ab4fc23ecbf397351f536bf486539eCAS |

Peery, M. Z., Beissinger, S. R., House, R. F., Berube, M., Hall, L. A., Sellas, A., and Palsboll, P. J. (2008). Characterizing source-sink dynamics with genetic parentage assignments. Ecology 89, 2746–2759.
Characterizing source-sink dynamics with genetic parentage assignments.Crossref | GoogleScholarGoogle Scholar | 18959312PubMed |

Pillay, K., Dawson, D. A., Horsburgh, G. J., Perrin, M. R., Burke, T., and Taylor, T. D. (2010). Twenty-two polymorphic microsatellite loci aimed at detecting illegal trade in the Cape Parrot, Poicephalus robustus (Psittacidae, Aves). Molecular Ecology Resources 10, 142–149.
Twenty-two polymorphic microsatellite loci aimed at detecting illegal trade in the Cape Parrot, Poicephalus robustus (Psittacidae, Aves).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ansLg%3D&md5=65c9e47515b30702c28c1013c3cc229dCAS |

Pimm, S. L. (2008). Biodiversity: climate change or habitat loss – which will kill more species? Current Biology 18, R117–R119.
Biodiversity: climate change or habitat loss – which will kill more species?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVWit7s%3D&md5=e1515a2b6d0421967e96187a8a828b9fCAS | 18269905PubMed |

Piry, S., Luikart, G., and Cornuet, J. M. (1999). BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. Journal of Heredity 90, 502–503.
BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data.Crossref | GoogleScholarGoogle Scholar |

Piry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L., and Estoup, A. (2004). GeneClass2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity 95, 536–539.
GeneClass2: a software for genetic assignment and first-generation migrant detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlWlsrk%3D&md5=ba876a07f23693766c54c26d67e8f4a3CAS | 15475402PubMed |

Põldmaa, T., Montgomerie, R., and Boag, P. (1995). Mating system of the cooperatively breeding Noisy Miner Manorina melanocephala, as revealed by DNA profiling. Behavioral Ecology and Sociobiology 37, 137–143.
Mating system of the cooperatively breeding Noisy Miner Manorina melanocephala, as revealed by DNA profiling.Crossref | GoogleScholarGoogle Scholar |

Porlier, M., Belisle, M., and Garant, D. (2009). Non-random distribution of individual genetic diversity along an environmental gradient. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences 364, 1543–1554.
Non-random distribution of individual genetic diversity along an environmental gradient.Crossref | GoogleScholarGoogle Scholar |

Primmer, C. R. (2009). From conservation genetics to conservation genomics. Annals of the New York Academy of Sciences 1162, 357–368.
From conservation genetics to conservation genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmt1Gku78%3D&md5=aa228b36507ea823b22b070761b32cb7CAS | 19432656PubMed |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=bac24ce7f1ca60f51ea51155257abd46CAS | 10835412PubMed |

Radford, J. Q., and Bennett, A. F. (2004). Thresholds in landscape parameters: occurrence of the White-browed Treecreeper Climacteris affinis in Victoria, Australia. Biological Conservation 117, 375–391.
Thresholds in landscape parameters: occurrence of the White-browed Treecreeper Climacteris affinis in Victoria, Australia.Crossref | GoogleScholarGoogle Scholar |

Radford, J. Q., and Bennett, A. F. (2007). The relative importance of landscape properties for woodland birds in agricultural environments. Journal of Applied Ecology 44, 737–747.
The relative importance of landscape properties for woodland birds in agricultural environments.Crossref | GoogleScholarGoogle Scholar |

Radford, J. Q., Bennett, A. F., and Cheers, G. J. (2005). Landscape-level thresholds of habitat cover for woodland-dependent birds. Biological Conservation 124, 317–337.
Landscape-level thresholds of habitat cover for woodland-dependent birds.Crossref | GoogleScholarGoogle Scholar |

Reed, D. H., and Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology 17, 230–237.
Correlation between fitness and genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Reid, J. M., Arcese, P., and Keller, L. F. (2003). Inbreeding depresses immune response in Song Sparrows (Melospiza melodia): direct and inter-generational effects. Proceedings of the Royal Society of London. Series B. Biological Sciences 270, 2151–2157.
Inbreeding depresses immune response in Song Sparrows (Melospiza melodia): direct and inter-generational effects.Crossref | GoogleScholarGoogle Scholar |

Robertson, O. J., and Radford, J. Q. (2009). Gap-crossing decisions of forest birds in a fragmented landscape. Austral Ecology 34, 435–446.
Gap-crossing decisions of forest birds in a fragmented landscape.Crossref | GoogleScholarGoogle Scholar |

Rollins, L. A., Woolnough, A. P., and Sherwin, W. B. (2006). Population genetic tools for pest management: a review. Wildlife Research 33, 251–261.
Population genetic tools for pest management: a review.Crossref | GoogleScholarGoogle Scholar |

Roman, J., and Palumbi, S. R. (2003). Whales before whaling in the North Atlantic. Science 301, 508–510.
Whales before whaling in the North Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1Cru7s%3D&md5=6dadfedab0f1482bd92c3a693320d9faCAS | 12881568PubMed |

Rosauer, D., Laffan, S. W., Crisp, M. D., Donnellan, S. C., and Cook, L. G. (2009). Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology 18, 4061–4072.
Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history.Crossref | GoogleScholarGoogle Scholar | 19754516PubMed |

Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228.
| 1:STN:280:DyaK2s3kslOntQ%3D%3D&md5=6f1a903e43db3646072ca53ab2943eddCAS | 9093870PubMed |

Rousset, F. (2000). Genetic differentiation between individuals. Journal of Evolutionary Biology 13, 58–62.
Genetic differentiation between individuals.Crossref | GoogleScholarGoogle Scholar |

Rousset, F. (2008). Dispersal estimation: demystifying Moran’s I. Heredity 100, 231–232.
Dispersal estimation: demystifying Moran’s I.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c7isVCjtw%3D%3D&md5=55736e323ab7dd4a0ba9ea1cb6ddbba0CAS | 17895903PubMed |

Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., and Hanski, I. (1998). Inbreeding and extinction in a butterfly metapopulation. Nature 392, 491–494.
Inbreeding and extinction in a butterfly metapopulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisFemsrw%3D&md5=92f087d4dea63053ebc98be5c9e4e060CAS |

Saether, B. E., Grotan, V., Engen, S., Noble, D. G., and Freckleton, R. P. (2009). Critical parameters for predicting population fluctuations of some British passerines. Journal of Animal Ecology 78, 1063–1075.
Critical parameters for predicting population fluctuations of some British passerines.Crossref | GoogleScholarGoogle Scholar | 19515097PubMed |

Scribner, K. T., Blanchong, J. A., Bruggeman, D. J., Epperson, B. K., Lee, C. Y., Pan, Y. W., Shorey, R. I., Prince, H. H., et al (2005). Geographical genetics: conceptual foundations and empirical applications of spatial genetic data in wildlife management. Journal of Wildlife Management 69, 1434–1453.
Geographical genetics: conceptual foundations and empirical applications of spatial genetic data in wildlife management.Crossref | GoogleScholarGoogle Scholar |

Selkoe, K. A., and Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9, 615–629.
Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers.Crossref | GoogleScholarGoogle Scholar | 16643306PubMed |

Selkoe, K. A., Henzler, C. M., and Gaines, S. D. (2008). Seascape genetics and the spatial ecology of marine populations. Fish and Fisheries 9, 363–377.
Seascape genetics and the spatial ecology of marine populations.Crossref | GoogleScholarGoogle Scholar |

Selwood, K., Mac Nally, R., and Thomson, J. R. (2009). Native bird breeding in a chronosequence of revegetated sites. Oecologia 159, 435–446.
Native bird breeding in a chronosequence of revegetated sites.Crossref | GoogleScholarGoogle Scholar | 19023600PubMed |

Simmons, J. M., Sunnucks, P., Taylor, A. C., and van der Ree, R. (2010). Beyond road-kill, radiotracking, recapture and FST – a review of some genetic methods to improve understanding of the influence of roads on wildlife. Ecology and Society 15, 9. Available at http://www.ecologyandsociety.org/vol15/iss1/art9/ [Verified 15 September 2010].

Slatkin, M. (2005). Seeing ghosts: the effect of unsampled populations on migration rates estimated for sampled populations. Molecular Ecology 14, 67–73.
Seeing ghosts: the effect of unsampled populations on migration rates estimated for sampled populations.Crossref | GoogleScholarGoogle Scholar | 15643951PubMed |

Sloane, M. A., Sunnucks, P., Alpers, D., Beheregaray, L. B., and Taylor, A. C. (2000). Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censusing method. Molecular Ecology 9, 1233–1240.
| 1:CAS:528:DC%2BD3cXntFCmur4%3D&md5=68b6ce18368baee37a5961ecc8dd2923CAS | 10972763PubMed |

Sommer, S. (2003). Effects of habitat fragmentation and changes of dispersal behaviour after a recent population decline on the genetic variability of noncoding and coding DNA of a monogamous Malagasy rodent. Molecular Ecology 12, 2845–2851.
Effects of habitat fragmentation and changes of dispersal behaviour after a recent population decline on the genetic variability of noncoding and coding DNA of a monogamous Malagasy rodent.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Ojsro%3D&md5=591df5e63c5d915393955b64d59ab32fCAS | 12969486PubMed |

Storfer, A., Murphy, M. A., Evans, J. S., Goldberg, C. S., Robinson, S., Spear, S. F., Dezzani, R., Delmelle, E., et al (2007). Putting the ‘landscape’ in landscape genetics. Heredity 98, 128–142.
Putting the ‘landscape’ in landscape genetics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7htVyntg%3D%3D&md5=3268ef3625b80884670b7091e9a273d8CAS | 17080024PubMed |

Storz, J. F., and Beaumont, M. A. (2002). Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56, 154–166.
| 1:CAS:528:DC%2BD38Xit1yns78%3D&md5=bcfc4debbe738aefe9af69476ba03d3cCAS | 11913661PubMed |

Stow, A. J., and Sunnucks, P. (2004a). High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat. Molecular Ecology 13, 419–430.
High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FitFCrtQ%3D%3D&md5=03f7b3e7334f0b18dba94c3125c48921CAS | 14717896PubMed |

Stow, A. J., and Sunnucks, P. (2004b). Inbreeding avoidance in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat. Molecular Ecology 13, 443–447.
Inbreeding avoidance in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FitFCruw%3D%3D&md5=90c88dbfc97f0fb805b2f761220afc07CAS | 14717898PubMed |

Stow, A. J., Sunnucks, P., Briscoe, D. A., and Gardener, M. G. (2001). The impact of habitat fragmentation on dispersal in Cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites. Molecular Ecology 10, 867–878.
The impact of habitat fragmentation on dispersal in Cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVensbw%3D&md5=6d0f2edb152f1a4483d2457c00a70f0aCAS | 11348496PubMed |

Strand, A. E., and Niehaus, J. M. (2007). KERNELPOP, a spatially explicit population genetic simulation engine. Molecular Ecology Notes 7, 969–973.
KERNELPOP, a spatially explicit population genetic simulation engine.Crossref | GoogleScholarGoogle Scholar |

Sumner, J., Rousset, F., Estoup, A., and Moritz, C. (2001). ‘Neighbourhood’ size, dispersal and density estimates in the prickly forest skink (Gnypetoscincus queenslandiae) using individual genetic and demographic methods. Molecular Ecology 10, 1917–1927.
‘Neighbourhood’ size, dispersal and density estimates in the prickly forest skink (Gnypetoscincus queenslandiae) using individual genetic and demographic methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslyhtrg%3D&md5=f9ae02baa18f4898eb79c6f2de68e3a4CAS | 11555236PubMed |

Sunnucks, P. (2000). Efficient genetic markers for population biology. Trends in Ecology & Evolution 15, 199–203.
Efficient genetic markers for population biology.Crossref | GoogleScholarGoogle Scholar |

Sunnucks, P., and Taylor, A. C. (2008) The application of genetic markers to landscape management. In ‘Landscape Analysis and Visualisation: Spatial Models for Natural Resource Management and Planning’. (Eds C. Pettit, W. Cartwright, I. Bishop, K. Lowell, D. Pullar and D. Duncan.) pp. 211–234. (Springer: Berlin.)

Sutherland, W. J., Pullin, A. S., Dolman, P. M., and Knight, T. M. (2004). The need for evidence-based conservation. Trends in Ecology & Evolution 19, 305–308.
The need for evidence-based conservation.Crossref | GoogleScholarGoogle Scholar |

Szabo, J. K., Vesk, P. A., Baxter, P. W. J., and Possingham, H. P. (2011). Paying the extinction debt: declining woodland birds in the Mount Lofty Ranges, South Australia. Emu 111, 59–70.
Paying the extinction debt: declining woodland birds in the Mount Lofty Ranges, South Australia.Crossref | GoogleScholarGoogle Scholar |

Tallmon, D. A., Koyuk, A., Luikart, G., and Beaumont, M. A. (2008). ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Molecular Ecology Resources 8, 299–301.
ONeSAMP: a program to estimate effective population size using approximate Bayesian computation.Crossref | GoogleScholarGoogle Scholar |

Tittler, R., Fahrig, L., and Villard, M. A. (2006). Evidence of large-scale source–sink dynamics and long-distance dispersal among Wood Thrush populations. Ecology 87, 3029–3036.
Evidence of large-scale source–sink dynamics and long-distance dispersal among Wood Thrush populations.Crossref | GoogleScholarGoogle Scholar | 17249228PubMed |

Tittler, R., Villard, M. A., and Fahrig, L. (2009). How far do songbirds disperse? Ecography 32, 1051–1061.
How far do songbirds disperse?Crossref | GoogleScholarGoogle Scholar |

Toon, A., Mather, P. B., Baker, A. M., Durrant, K. L., and Hughes, J. M. (2007). Pleistocene refugia in an arid landscape: analysis of a widely distributed Australian passerine. Molecular Ecology 16, 2525–2541.
Pleistocene refugia in an arid landscape: analysis of a widely distributed Australian passerine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Whs7w%3D&md5=d9a115ca707d3af20c14b1c3969b7fbeCAS | 17561911PubMed |

Trakhtenbrot, A., Nathan, R., Perry, G., and Richardson, D. M. (2005). The importance of long-distance dispersal in biodiversity conservation. Diversity & Distributions 11, 173–181.
The importance of long-distance dispersal in biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |

Turner, T. F., Wares, J. P., and Gold, J. R. (2002). Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus). Genetics 162, 1329–1339.
| 12454077PubMed |

van Houtan, K. S., Pimm, S. L., Halley, J. M., Bierregaard, R. O., and Lovejoy, T. E. (2007). Dispersal of Amazonian birds in continuous and fragmented forest. Ecology Letters 10, 219–229.
Dispersal of Amazonian birds in continuous and fragmented forest.Crossref | GoogleScholarGoogle Scholar | 17305805PubMed |

Vandewoestijne, S., Schtickzelle, N., and Baguette, M. (2008). Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biology 6, 46.
Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation.Crossref | GoogleScholarGoogle Scholar | 18986515PubMed |

Vekemans, X., and Hardy, O. J. (2004). New insights from fine-scale spatial genetic structure analyses in plant populations. Molecular Ecology 13, 921–935.
New insights from fine-scale spatial genetic structure analyses in plant populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7itlehug%3D%3D&md5=ddcef0b43fbc5a1b08104012e919f4e9CAS | 15012766PubMed |

Vernesi, C., and Bruford, M. W. (2009). Recent developments in molecular tools for conservation. In ‘Population Genetics for Animal Conservation’. (Eds G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli and C. Vernesi.) pp. 313–336. (Cambridge University Press: Cambridge, UK.)

Walker, F. M., Sunnucks, P., and Taylor, A. C. (2006). Genotyping of ‘captured’ hairs reveals burrow-use and ranging behavior of southern hairy-nosed wombats. Journal of Mammalogy 87, 690–699.
Genotyping of ‘captured’ hairs reveals burrow-use and ranging behavior of southern hairy-nosed wombats.Crossref | GoogleScholarGoogle Scholar |

Walker, F. M., Taylor, A. C., and Sunnucks, P. (2007). Does soil type drive social organization in southern hairy-nosed wombats? Molecular Ecology 16, 199–208.
Does soil type drive social organization in southern hairy-nosed wombats?Crossref | GoogleScholarGoogle Scholar | 17181731PubMed |

Walker, F. M., Sunnucks, P., and Taylor, A. C. (2008a). Evidence for habitat fragmentation altering within-population processes in wombats. Molecular Ecology 17, 1674–1684.
Evidence for habitat fragmentation altering within-population processes in wombats.Crossref | GoogleScholarGoogle Scholar | 18386311PubMed |

Walker, F. M., Taylor, A. C., and Sunnucks, P. (2008b). Female dispersal and male kinship-based association in southern hairy-nosed wombats (Lasiorhinus latifrons). Molecular Ecology 17, 1361–1374.
Female dispersal and male kinship-based association in southern hairy-nosed wombats (Lasiorhinus latifrons).Crossref | GoogleScholarGoogle Scholar | 18302694PubMed |

Wang, J. L. (2004). Application of the one-migrant-per-generation rule to conservation and management. Conservation Biology 18, 332–343.
Application of the one-migrant-per-generation rule to conservation and management.Crossref | GoogleScholarGoogle Scholar |

Wang, J. L. (2009). A new method for estimating effective population sizes from a single sample of multilocus genotypes. Molecular Ecology 18, 2148–2164.
A new method for estimating effective population sizes from a single sample of multilocus genotypes.Crossref | GoogleScholarGoogle Scholar | 19389175PubMed |

Waples, R. S., and Do, C. (2008). LDNE: a program for estimating effective population size from data on linkage disequilibrium. Molecular Ecology Resources 8, 753–756.
LDNE: a program for estimating effective population size from data on linkage disequilibrium.Crossref | GoogleScholarGoogle Scholar |

Waples, R. S., and Gaggiotti, O. (2006). What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Molecular Ecology 15, 1419–1439.
What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsVCjur4%3D&md5=9051d8800d119378a599ca8ec836e74dCAS | 16629801PubMed |

Waples, R. S., Punt, A. E., and Cope, J. M. (2008). Integrating genetic data into management of marine resources: how can we do it better? Fish and Fisheries 9, 423–449.
Integrating genetic data into management of marine resources: how can we do it better?Crossref | GoogleScholarGoogle Scholar |

Watson, D. M. (2011). A productivity-based explanation for woodland bird declines: poorer soils yield less food. Emu 111, 10–18.
A productivity-based explanation for woodland bird declines: poorer soils yield less food.Crossref | GoogleScholarGoogle Scholar |

Watts, P. C., Rousset, F., Saccheri, I. J., Leblois, R., Kemp, S. J., and Thompson, D. J. (2007). Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale : Odonata : Zygoptera) populations: analysis of ‘neighbourhood size’ using a more precise estimator. Molecular Ecology 16, 737–751.
Compatible genetic and ecological estimates of dispersal rates in insect (Coenagrion mercuriale : Odonata : Zygoptera) populations: analysis of ‘neighbourhood size’ using a more precise estimator.Crossref | GoogleScholarGoogle Scholar | 17284208PubMed |

Westemeier, R. L., Brawn, J. D., Simpson, S. A., Esker, T. L., Jansen, R. W., Walk, J. W., Kershner, E. L., Bouzat, J. L., and Paige, K. N. (1998). Tracking the long-term decline and recovery of an isolated population. Science 282, 1695–1698.
Tracking the long-term decline and recovery of an isolated population.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnslGgs7g%3D&md5=e31836ead0aa56f834aa15a8963f0885CAS | 9831558PubMed |

Westerdahl, H., Waldenstrom, J., Hansson, B., Hasselquist, D., von Schantz, T., and Bensch, S. (2005). Associations between malaria and MHC genes in a migratory songbird. Proceedings of the Royal Society of London. Series B. Biological Sciences 272, 1511–1518.
Associations between malaria and MHC genes in a migratory songbird.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpvFehur8%3D&md5=bc955e627ed3bcf2889cec578df9a54fCAS |

Wilding, C. S., Butlin, R. K., and Grahame, J. (2001). Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. Journal of Evolutionary Biology 14, 611–619.
Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsl2ntrk%3D&md5=69612835f453a9c7a38dd37f23c4d82cCAS |

Willi, Y., van Buskirk, J., and Hoffmann, A. A. (2006). Limits to the adaptive potential of small populations. Annual Review of Ecology Evolution and Systematics 37, 433–458.
Limits to the adaptive potential of small populations.Crossref | GoogleScholarGoogle Scholar |

Wilson, G. A., and Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191.
| 12663554PubMed |

Wilson, I. J., Weale, M. E., and Balding, D. J. (2003). Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities. Journal of the Royal Statistical Society. Series A. Statistics in Society 166, 155–188.
Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities.Crossref | GoogleScholarGoogle Scholar |

Young, A. G., Brown, A. H. D., Murray, B. G., Thrall, P. H., and Miller, C. H. (2000). Genetic erosion, restricted mating and reduced viability in fragmented populations of the endangered grassland herb Rutidosis leptorrhynchoides. In ‘Genetics, Demography and Viability of Fragmented Populations. Vol. 4’. (Eds A. G. Young and G. M. Clarke.) pp. 335–359. (Cambridge University Press: Cambridge, UK.)

Zellmer, A. J., and Knowles, L. L. (2009). Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Molecular Ecology 18, 3593–3602.
Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WhtrnN&md5=c164fae81a59a4fe0c26809a9aec45f8CAS | 19674302PubMed |