Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Geographical variation in the morphology of the Wedge-tailed Shearwater (Puffinus pacificus)

Leigh S. Bull
+ Author Affiliations
- Author Affiliations

School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand. Present address: Universite Paris-Sud XI, Laboratoire Ecologie Systematique et Evolution, Batiment 362, F-91405 Orsay cedex, France. Email: leigh.bull@ese.u-psud.fr

Emu 106(3) 233-243 https://doi.org/10.1071/MU05050
Submitted: 26 September 2005  Accepted: 15 June 2006   Published: 18 August 2006

Abstract

Geographical variation in the morphology of the Wedge-tailed Shearwater (Puffinus pacificus) was assessed using multivariate analyses, including MANOVA and canonical discriminant analysis. This study tested the roles of climatic (sea surface temperature) and geographical (latitude, longitude and inter-population distance) factors as potential agents of natural selection on the body dimensions of this geographically variable species. Patterns of morphological variation, represented by phenotypic distances, were found to be unrelated to the geographical proximity of colonies. The Wedge-tailed Shearwater exhibited the trend in body size predicted by Bergmann’s Rule, increasing significantly with increasing latitude and decreasing temperature. Allen’s Rule proposes that an animal’s extremities should be relatively shorter in colder climates, but the data did not support this hypothesis with regards to variation in bill-shape of the Wedge-tailed Shearwater. Owing to the interrelated nature of ecological parameters, such as food, climate, distribution, life history and breeding biology, it is unlikely that a single factor is responsible for the observed morphological variation. However, food, through its influence on competition, dispersal, growth, fecundity and survival, may play an important role in the patterns of morphological variation found in this study. Therefore, the heterogeneity of the foraging habitat over the range of the species may be responsible for the observed variation, owing to differences in the distance required to travel to the feeding grounds and the availability and quality of food.


Acknowledgments

I thank the collection managers and curators of the bird collections in: the National Museum of New Zealand Te Papa Tongarewa (Wellington, NZ); the American Museum of Natural History (New York, USA); the National Museum of Natural History (Smithsonian Institute, Washington DC, USA); the Natural History Museum (Tring, UK); and the Australian Museum (Sydney, Australia) for access to specimens and facilities. This study was funded by the following sources: Collection study grant, the American Museum of Natural History; Hutton Fund, the Royal Society of New Zealand; Victoria University of Wellington Science Faculty grants; Helen Stewart Royle Scholarship; and the Victoria University of Wellington Postgraduate Scholarship. Thanks go to Bruce Norris and Svend Andersen for developing the computer program to calculate geographical distances, and to Ben Bell and Shirley Pledger for their advice and feedback throughout this study. Two anonymous referees provided helpful comments, which improved the paper. Many thanks go to Shirley Pledger for calculation of the Mantel’s test.


References

Adkison, M. (1995). Population differentiation in pacific salmon: local adaptation, genetic drift, or the environment? Canadian Journal of Fisheries and Aquatic Sciences 52, 2762–2777.
Ashmole N. P. (1971). Seabird ecology and the marine environment. In ‘Avian Biology. Vol. 1’. (Eds D. S. Farner and J. R. King.) pp. 223–286. (Academic Press: London.)

Austin, J. J. , White, R. W. G. , and Ovenden, J. R. (1994). Population-genetic structure of a philopatric, colonially nesting seabird, the Short-tailed Shearwater (Puffinus tenuirostris). Auk 111, 70–79.
Ballance L. T., Ainley D. G., and Hunt G. L., Jr (2001). Seabird foraging ecology. In ‘Encyclopedia of Ocean Sciences. Vol. 5’. (Eds J. H. Steele, S. A. Thorpe and K. K. Turekian.) pp. 2636–2644. (Academic Press: London.)

Bergmann, C. (1847). Üeber die Verhältnisse der Wärmeökonomie de Thiere zu ihrer Grösse. Göttinger Studien 3, 595–708.
Booth A. M. (1996). The breeding ecology of the North Island Little Shearwater Puffinus assimilis haurakiensis. M.Sc. Thesis, Massey University, Palmerston North, NZ.

Boyce, M. S. (1978). Climatic variability and body size variation in Muskrats (Ondatra zibethicus) of North America. Oecologia 36, 1–20.
Crossref | GoogleScholarGoogle Scholar | Brooke M. de L. (1990). ‘The Manx Shearwater.’ (T. & A. D. Poyser: London.)

Brooke M. (2004). ‘Albatrosses and Petrels Across the World.’ (Oxford University Press: Oxford, UK.)

Bull L. S. (2002). Morphological variation in the shearwater genus Puffinus. Ph.D. Thesis, Victoria University of Wellington, Wellington, NZ.

Bull, L. S. , Haywood, J. , and Pledger, S. (2004). Components of phenotypic variation in the morphometrics of Shearwater (Puffinus) species. Ibis 146, 38–45.
Crossref | GoogleScholarGoogle Scholar | Calder W. A. (1984). ‘Size, Function and Life History.’ (Havard University Press: Cambridge, MA.)

Carboneras C. (Eds) (1992). Family Procellaridae (Petrels and Shearwaters). In ‘Handbook of the Birds of the World. Vol. 1. Ostrich to Ducks’. (Eds J. del Hoyo, A. Elliott and J. Sargatal.) pp. 198–270. (Lynx Edicions: Barcelona.)

Croxall, J. P. (1995). Sexual size dimorphism in seabirds. Oikos 73, 399–403.
Cuthbert R. (1999). The breeding ecology and conservation of Hutton’s Shearwater (Puffinus huttoni). Ph.D. Thesis, University of Otago, Dunedin, NZ.

Davis, J. (1954). Seasonal changes in bill length of certain passerine birds. Condor 56, 142–149.
Endler J. A. (1977). ‘Geographic Variation, Speciation and Clines.’ (Princeton University Press: Princeton, NJ.)

Fairbairn, J. , and Shine, R. (1993). Patterns of sexual size dimorphism in seabirds of the southern hemisphere. Oikos 68, 139–145.
Foster S. A., and Endler J. A. (Eds) (1999). ‘Geographic Variation in Behavior.’ (Oxford University Press: Oxford, UK.)

Freeman, S. , and Jackson, W. M. (1990). Univariate metrics are not adequate to measure avian body size. Auk 107, 69–74.
Furness R. W., and Monaghan P. (1987). ‘Seabird Ecology.’ (Blackie & Son: Glasgow.)

Geist, V. (1987). Bergmann’s rule is invalid. Canadian Journal of Zoology 65, 1035–1038.
Grant B. R., and Grant P. R. (1989). ‘Evolutionary Dynamics of a Natural Population: The Large Cactus Finch of the Galapagos.’ (University of Chicago Press: Chicago, IL.)

Grant, P. R. (1968). Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Systematic Zoology 17, 319–333.
Crossref | GoogleScholarGoogle Scholar | PubMed | Löfgren L. (1984). ‘Ocean Birds: Their Breeding, Biology and Behaviour.’ (Croom Helm: London.)

Macdonald, D. W. , Courtenay, O. , Forbes, S. , and Mathews, F. (1999). The Red Fox (Vulpes vulpes) in Saudi Arabia: loose-knit groupings in the absence of territoriality. Journal of Zoology 249, 383–391.
Crossref | GoogleScholarGoogle Scholar | Manly B. F. J. (1991). ‘Randomization and Monte Carlo Methods in Biology.’ (Chapman and Hall: London.)

Marchant S., and Higgins P. J. (Eds) (1990). ‘Handbook of Australian, New Zealand and Antarctic Birds: Vol. 1: Ratites to Ducks (Part A).’ (Oxford University Press: Melbourne.)

Mayr E. (1970). ‘Populations, Species, and Evolution: An Abridgement of Animal Species and Evolution.’ (Belknap Press: Cambridge, MA.)

Mayr E., and Diamond J. M. (2001). ‘The Birds of Northern Melanesia: Speciation, Ecology and Biogeography.’ (Oxford University Press: Oxford, UK.)

McNab, B. K. (1971). On the ecological significance of Bergmann’s rule. Ecology 52, 845–854.
Crossref | GoogleScholarGoogle Scholar | Nelson B. (1979). ‘Seabirds: Their Biology and Ecology.’ (A&W Publishers: New York.)

Newton, I. , and Dale, L. (1996). Relationships between migration and latitude among west European birds. Journal of Animal Ecology 65, 137–146.
Crossref | GoogleScholarGoogle Scholar | Schew W. A., and Ricklefs R. E. (1998). Developmental plasticity. In ‘Avian Growth and Development’. (Eds J. M. Starck and R. E. Ricklefs.) pp. 288–304. (Oxford University Press: Oxford, UK.)

Schreiber E. A., and Burger J. (Eds) (2001). ‘Biology of Marine Birds.’ (CRC Press: Boca Raton, FL.)

Skira, I. J. (1991). The Short-tailed Shearwater: a review of its biology. Corella 15, 45–52.
Sneath P. H. A., and Sokal R. R. (1973). ‘Numerical Taxonomy.’ (W. H. Freeman & Co.: San Francisco.)

Spear, L. B. , and Ainley, D. G. (1997). Flight behaviour of seabirds in relation to wind direction and wing morphology. Ibis 139, 221–233.
Thompson D. B. (1999). Different spatial scales of natural selection and gene flow. In ‘Geographic Variation in Behavior’. (Eds S. A. Foster and J. A. Endler.) pp. 33–51. (Oxford University Press: Oxford, UK.)

Travis J. (1994). Evaluating the adaptive role of morphological plasticity. In ‘Ecological Morphology: Integrative Organismal Biology’. (Eds P. C. Wainwright and S. M. Reilly.) pp. 99–122. (University of Chicago Press: Chicago, IL.)

United States Navy Hydrographic Office  (1944). ‘World Atlas of Sea Surface Temperatures.’ Hydrographic Office of the United States Publication 225. 2nd edn. (Naval Oceanographic Office: Washington, D.C.)

van Heezik, Y. M. (1990). Seasonal, geographical and age-related variations in the diet of the Yellow-eyed Penguin (Megadyptes antipodes). New Zealand Journal of Zoology 17, 201–212.
Visser G. H. (2001). Chick growth and development in seabirds. In ‘Biology of Marine Birds’. (Eds E. A. Schreiber and J. Burger.) pp. 439–465. (CRC Press: Boca Raton, FL.)

Warham J. (1990). ‘The Petrels: Their Ecology and Breeding Systems.’ (Academic Press: London.)

Waugh, S. M. , Prince, P. A. , and Weimerskirch, H. (1999). Geographical variation in morphometry of Black-browed and Grey-headed Albatrosses from four sites. Polar Biology 22, 189–194.
Crossref | GoogleScholarGoogle Scholar | Whittow G. C. (1997). Wedge-tailed Shearwater (Puffinus pacificus). In ‘The Birds of North America’. (Eds A. Poole and F. Gill.) No. 305. (The Birds of North America Inc.: Philadelphia.)

Wigginton, J. D. , and Dobson, F. S. (1999). Environmental influences on geographic variation in body size of Western Bobcats. Canadian Journal of Zoology 77, 802–813.
Crossref | GoogleScholarGoogle Scholar |

Wikelski, M. , and Trillmich, F. (1997). Body size and sexual size dimorphism in Marine Iguanas fluctuate as a result of opposing natural and sexual selection: an island comparison. Evolution 51, 922–936.
Crossref | GoogleScholarGoogle Scholar |

Wright, S. (1943). Isolation by distance. Genetics 28, 114–138.


Zink, R. M. , and Remsen, J. V., Jr (1986). Evolutionary processes and patterns of geographic variation in birds. Current Ornithology 4, 1–69.


Zusi, R. L. (1982). Infraspecific geographic variation and the subspecies concept. Auk 99, 606–608.





Appendix 1.  Geographic and climatic information for Wedge-tailed Shearwater breeding locations
NPO = north Pacific Ocean; SPO = south Pacific Ocean; IO = Indian Ocean; TAS = Tasman Sea; * = no longer breeds at that location; + = breeds at that location but no sample for this study
A1