10.1071/MF24240

Marine and Freshwater Research

Supplementary Material

Age and growth of the endangered Maugean skate (*Zearaja maugeana*) by using microchemical analysis

Claire van Werven^{A,*}, David Moreno^A, Sean Tracey^A, and Jeremy Lyle^A

^A Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tas., Australia.

^{*}Correspondence to: Claire van Werven Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tas., Australia Email: claire.vanwerven@gmail.com

Table S1. Element list included in laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS)

 ablation analysis and mean detection limits calculated in parts per million (ppm) based on Longerich *et al.* (1996).

Element	Detection limit (ppm)
⁷ Li	0.293
²³ Na	6.41
^{24}Mg	0.157
²⁷ Al	0.112
²⁹ Si	37.5
³⁹ K	1.81
⁴³ Ca	10.9
⁴⁴ Ca	8.02
⁵⁵ Mn	0.137
⁵⁶ Fe	1.42
⁶⁶ Zn	0.117
⁷⁵ As	0.239
⁸⁵ Rb	0.019
⁸⁸ Sr	0.005
¹¹¹ Cd	0.024
¹¹⁵ In	0.000307
¹³⁷ Ba	0.000743
²⁰² Hg	0.047383
²⁰⁸ Pb	0.004989
²³² Th	0.000189
²³⁸ U	0.000121

Table S2. Growth parameters of female Maugean skate (Zearaja maugeana) aged using vertebrae.

Mode	Model Model fit		L_{∞}	s.e.(±)	L_{θ}	s.e.(±)	k	s.e.(±)	φ4	s.e.(±)	Longevity					
		Rank	RSE	AICc	Δ_i	Wi	(mm)		(mm)		(y ⁻¹)				t _{max}	t _{maxth}
M2	VBGM, L ₀	1	45.28	308.33	0.00	58.16	843.53	35.76	103.50		0.27	0.04			10	12.84
	= 103.50															
M5	TPVB hyper-k	2	44.33	310.51	2.19	19.48	809.45	28.38	102.26	27.57	0.36	0.07	0.26	0.13		9.63
M1	VBGM	3	46.11	310.99	2.67	15.32	845.06	36.05	109.49	31.52	0.26	0.04				13.33
M6	TPVB log- L_{∞}	4	46.96	313.86	5.53	3.66	837.22	67.08	109.68	29.24	0.27	0.05	845.21	45.17		12.84
M3	Gompertz	5	48.79	314.27	5.94	2.98	804.21	23.86	131.60	23.45	0.43	0.05				8.06
M4	Logistic	6	52.25	318.25	9.92	0.41	788.36	20.16	156.48	29.28	0.58	0.07				5.98
Mode	l- averaged						835.58	35.10	110.41	15.32	0.29	0.05			10	12.12

Models fitted to observed data (n = 44). Models 1–6 (Table 3) ranked based on performance using the corrected Akaike information criteria (AIC_c) and Akaike weights (w_i). Parameter estimates and standard error for 2, 3 and 4 parameter models are provided. Model averaged results were calculated as a weighted mean based on w_i . RSE, residual standard error; s.e., standard error for the parameter estimates; $\varphi 4$, additional parameter for bi-phasic models. M5 = h, $M6 = L_{\infty 2}$. In model 3, $t_0 = 1.38 \pm 0.22$. In model 5, the growth coefficient (k) is modified by h at a scale derived by A. A is a derivative of time around the inflection point at time of maturity. Therefore at L_{50} , At = 1 and growth = k*h. In model 6 the phase specific values of L_{∞} were used to estimate the growth rate at t_0 , L_{50} and t_{95} . Longevity: t_{max} , observed oldest individual (based on visual banding estimates); t_{maxh} , theoretical longevity (Fabens 1965) (5ln(2)/k)

Model		Model fit			L_{∞}	s.e.(±)	L_{θ}	s.e.(±)	k	s.e.(±)	φ4	s.e.(±)	Longevity			
		Rank	RSE	AICc	Δ_i	Wi	(mm)		(mm)		(y ⁻¹)				tmax	tmaxth
M2	VBGM, L_0	1	33.18	192.48	0.00	62.16	747.47	33.25	103.50	0.00	0.32	0.05			10	10.83
	= 103.50															
M1	VBGM	2	34.06	195.58	3.10	13.18	746.36	31.83	103.28	22.08	0.33	0.05				10.50
M3	Gompertz	3	34.19	195.72	3.25	12.27	716.67	20.04	105.54	20.38	0.52	0.06				6.66
M4	Logistic	4	35.03	196.65	4.18	7.71	697.88	15.61	107.50	22.22	0.78	0.08				4.44
M6	TPVB log-	5	34.85	198.99	6.51	2.40	724.88	56.96	103.56	21.32	0.36	0.12	738.33	37.06		9.63
	L_{∞}															
M5	TPVB	6	34.95	199.10	6.61	2.28	751.33	35.29	103.73	20.56	0.30	0.06	-0.09	0.19		11.55
	hyper-S															
Mod	lel-averaged						739.27	30.70	109.32	10.43	0.38	0.06			10	9.78

Table S3. Growth parameters of male Maugean skate (Zearaja maugeana) aged using vertebrae.

Models fitted to observed data (n = 44). Models 1 - 6 (Table 3) ranked based on performance using the corrected Akaike information criteria (AIC_c) and Akaike weights (w_i). Parameter estimates and standard error for 2, 3 and 4 parameter models are provided. Model averaged results were calculated as a weighted mean based on w_i .RSE, residual standard error; s.e., standard error for the parameter estimates; φ 4, additional parameter for bi-phasic models. M5 = h, M6 = $L_{\infty 2}$. In model 3, $t_0 = 1.25 \pm 0.19$. In model 5, the growth coefficient (k) is modified by h at a scale derived by A. A is a derivative of time around the inflection point at time of maturity. Therefore at L_{50} , At = 1 and growth = k*h. In model 6 the phase specific values of L_{∞} were used to estimate the growth rate at t_0 , L_{50} and t_{95} . Longevity: t_{max} , observed oldest individual (based on visual banding estimates); t_{maxth} , theoretical longevity (Fabens, 1965) (5ln(2)/k)

Model		Model fit			L_{∞}	s.e.(±)	L_{θ}	s.e.(±)	k	s.e.(±)	φ4	s.e.(±)	Longevity			
		Rank	RSE	AICc	Δ_i	Wi	(mm)		(mm)		(y ⁻¹)				t _{max}	tmaxth
M2	VBGM, <i>L</i> ₀ = 103.50	1	44.65	505.42	0.00	62.58	836.34	31.83	103.50	0.00	0.25	0.03			10	13.86
M1	VBGM	2	45.13	507.76	2.35	19.36	835.17	30.70	107.75	21.07	0.26	0.03				13.33
M5	TPVB hyper-k	3	45.03	508.98	3.56	10.53	819.83	28.32	105.11	20.56	0.29	0.04	0.12	0.10		11.95
M6	TPVB log- L_{∞}	4	45.63	510.25	4.83	5.59	834.53	56.24	107.81	22.68	0.26	0.04	837.39	39.60		13.33
M3	Gompertz	5	47.39	512.45	7.03	1.86	788.32	20.21	123.03	17.21	0.43	0.04				8.06
M4	Logistic	6	50.61	518.77	13.35	0.08	767.73	16.65	141.93	19.79	0.61	0.05				5.68
Mod	lel- averaged						833.33	32.38	110.45	13.92	0.26	0.03			10	13.41

Table S4. Growth parameters of pooled female and male Maugean skate (Zearaja maugeana) aged using vertebrae.

Models fitted to observed data (n = 44). Models 1 - 6 (Table 3) ranked based on performance using the corrected Akaike information criteria (AIC_c) and Akaike weights (w_i). Parameter estimates and standard error for 2, 3 and 4 parameter models are provided. Model averaged results were calculated as a weighted mean based on w_i . RSE, residual standard error; s.e., standard error for the parameter estimates; $\varphi 4$ = additional parameter for bi-phasic models. M5 = h, $M6 = L_{\infty 2}$. In model 3, $t_0 = 1.44 \pm 0.17$. In model 5, the growth coefficient (k) is modified by h at a scale derived by A. A is a derivative of time around the inflection point at time of maturity. Therefore, at L_{50} , At = 1 and growth = k*h. In model 6 the phase specific values of L_{∞} were used to estimate the growth rate at t_0 , L_{50} and t_{95} . Longevity: t_{max} , observed oldest individual (based on visual banding estimates); t_{maxth} , theoretical longevity (Fabens 1965) (5ln(2)/k)

References

Fabens AJ (1965) Properties and fitting of the von Bertalanffy growth curve. *Growth* 29, 265–289. PMID:5865688

Longerich HP, Günther D, Jackson SE (1996) Elemental fractionation in laser ablation inductively coupledplasma mass spectrometry. *Fresenius' Journal of Analytical Chemistry* **355**(5), 538–542. https://doi.org/10.1007/s0021663550538