Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Development of a 16S metabarcoding assay for the environmental DNA (eDNA) detection of aquatic reptiles across northern Australia

Katrina M. West https://orcid.org/0000-0002-9026-5058 A E , Matthew Heydenrych https://orcid.org/0000-0002-8426-3400 A , Rose Lines https://orcid.org/0000-0003-1027-2889 A B , Tony Tucker https://orcid.org/0000-0003-2318-7819 C , Sabrina Fossette https://orcid.org/0000-0001-8580-9084 C , Scott Whiting C and Michael Bunce https://orcid.org/0000-0002-0302-4206 A D
+ Author Affiliations
- Author Affiliations

A Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia.

B eDNA frontiers, School of Molecular and Life Sciences, Curtin University, Kent Street, Bentley, WA 6102, Australia.

C Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, 17 Dick Perry Avenue, Kensington, WA 6151, Australia.

D Environmental Protection Authority, 215 Lambton Quay, Wellington, 6011, New Zealand.

E Corresponding author. Email: katrina.west@curtin.edu.au

Marine and Freshwater Research - https://doi.org/10.1071/MF20288
Submitted: 24 September 2020  Accepted: 8 December 2020   Published online: 16 February 2021

Abstract

A severe lack of distribution data for aquatic reptiles in northern Australia leaves many taxa vulnerable to extirpation and extinction. Environmental DNA (eDNA) technologies offer sensitive and non-invasive genetic alternatives to trapping and visual surveys and are increasingly employed for the detection of aquatic and semi-aquatic reptiles. However, these eDNA approaches have largely applied species-specific primers that do not provide a cost-effective avenue for the simultaneous detection of multiple reptilian taxa. Here, we present a mitochondrial 16S rRNA metabarcoding assay for the broad detection of aquatic and semi-aquatic reptile species. This assay is tested on water samples collected at multiple sampling sites at two tropical locations, including 12 marine and estuarine sites in Roebuck Bay, Western Australia, and four estuarine sites in Cooktown, Queensland, Australia. In total, nine reptile taxa were detected from 10 of the 16 sampled sites, including marine and freshwater turtles, aquatic, semi-aquatic and terrestrial snakes, and terrestrial skinks. However, inconsistencies in the detection of previously observed aquatic reptiles at our sampled sites, such as saltwater crocodile and sea snakes, indicated that further research is required to assess the reliability, strengths and limitations of eDNA methods for aquatic reptile detection before it can be integrated as a broad-scale bioassessment tool.

Keywords: aquatic reptile, environmental DNA, marine turtles, metabarcoding, northern Australia, sea snakes.


References

Adams, C. I. M., Hoekstra, L. A., Muell, M. R., and Janzen, F. J. (2019). A brief review of non-avian reptile environmental DNA (eDNA), with a case study of painted turtle (Chrysemys picta) eDNA under field conditions. Diversity 11, 50.
A brief review of non-avian reptile environmental DNA (eDNA), with a case study of painted turtle (Chrysemys picta) eDNA under field conditions.Crossref | GoogleScholarGoogle Scholar |

Alfaro, M. E., Karns, D. R., Voris, H. K., Brock, C. D., and Stuart, B. L. (2008). Phylogeny, evolutionary history, and biogeography of Oriental–Australian rear-fanged water snakes (Colubroidea: Homalopsidae) inferred from mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 46, 576–593.
Phylogeny, evolutionary history, and biogeography of Oriental–Australian rear-fanged water snakes (Colubroidea: Homalopsidae) inferred from mitochondrial and nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar | 18182308PubMed |

Australian Government (2011). ‘Survey Guidelines for Australia’s Threatened Reptiles: Guidelines for Detecting Reptiles Listed as Threatened under the EPBC Act.’ (Department of Sustainability, Environment, Water, Population and Communities.) Available at https://www.environment.gov.au/resource/survey-guidelines-australias-threatened-reptiles-guidelines-detecting-reptiles-listed [Verified July 2020]

Baker, S. J., Niemiller, M. L., Stites, A. J., Ash, K. T., Davis, M. A., Dreslik, M. J., and Phillips, C. A. (2020). Evaluation of environmental DNA to detect Sistrurus catenatus and Ophidiomyces ophiodiicola in crayfish burrows. Conservation Genetics Resources 12, 13–15.
Evaluation of environmental DNA to detect Sistrurus catenatus and Ophidiomyces ophiodiicola in crayfish burrows.Crossref | GoogleScholarGoogle Scholar |

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., and Wheeler, D. L. (2005). GenBank. Nucleic Acids Research 33, D34–D38.
GenBank.Crossref | GoogleScholarGoogle Scholar | 15608212PubMed |

Bland, L. M., and Böhm, M. (2016). Overcoming data deficiency in reptiles. Biological Conservation 204, 16–22.
Overcoming data deficiency in reptiles.Crossref | GoogleScholarGoogle Scholar |

Böhm, M., Collen, B., Baillie, J. E. M., Bowles, P., Chanson, J., Cox, N., Hammerson, G., Hoffmann, M., Livingstone, S. R., and Ram, M. (2013). The conservation status of the world’s reptiles. Biological Conservation 157, 372–385.
The conservation status of the world’s reptiles.Crossref | GoogleScholarGoogle Scholar |

Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., Douglas, W. Y., and De Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution 29, 358–367.
Environmental DNA for wildlife biology and biodiversity monitoring.Crossref | GoogleScholarGoogle Scholar |

Boyer, F., Mercier, C., Bonin, A., Taberlet, P., and Coissac, E. (2016). OBITools: a Unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources 16, 176–182.
OBITools: a Unix-inspired software package for DNA metabarcoding.Crossref | GoogleScholarGoogle Scholar | 25959493PubMed |

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13, 581.
DADA2: high-resolution sample inference from Illumina amplicon data.Crossref | GoogleScholarGoogle Scholar | 27214047PubMed |

Davy, C. M., Kidd, A. G., and Wilson, C. C. (2015). Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS One 10, e0130965.
Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles.Crossref | GoogleScholarGoogle Scholar | 26200348PubMed |

de Souza, L. S., Godwin, J. C., Renshaw, M. A., and Larson, E. (2016). Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS One 11, e0165273.
Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms.Crossref | GoogleScholarGoogle Scholar | 27776150PubMed |

Doody, J. S., Mayes, P., Clulow, S., Rhind, D., Green, B., Castellano, C. M., D’Amore, D., and Mchenry, C. (2014). Impacts of the invasive cane toad on aquatic reptiles in a highly modified ecosystem: the importance of replicating impact studies. Biological Invasions 16, 2303–2309.
Impacts of the invasive cane toad on aquatic reptiles in a highly modified ecosystem: the importance of replicating impact studies.Crossref | GoogleScholarGoogle Scholar |

Egeter, B., Peixoto, S., Brito, J. C., Jarman, S., Puppo, P., and Velo-Antón, G. (2018). Challenges for assessing vertebrate diversity in turbid Saharan water-bodies using environmental DNA. Genome 61, 807–814.
Challenges for assessing vertebrate diversity in turbid Saharan water-bodies using environmental DNA.Crossref | GoogleScholarGoogle Scholar | 30312548PubMed |

Elbrecht, V., and Leese, F. (2017). Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Frontiers in Environmental Science 5, 11.
Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment.Crossref | GoogleScholarGoogle Scholar |

Elfes, C., Livingstone, S., Lane, A., Lukosche, V., Sanders, K., Courtney, A., Gatus, J., Guinea, M., Lobo, A., and Milton, D. (2013). Fascinating and forgotten: the conservation status of marine elapid snakes. Herpetological Conservation and Biology 8, 37–52.

Evans, N. T., Olds, B. P., Renshaw, M. A., Turner, C. R., Li, Y., Jerde, C. L., Mahon, A. R., Pfrender, M. E., Lamberti, G. A., and Lodge, D. M. (2016). Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources 16, 29–41.
Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding.Crossref | GoogleScholarGoogle Scholar | 26032773PubMed |

Feist, S. M., Jones, R. L., Copley, J. L., Pearson, L. S., Berry, G. A., and Qualls, C. P. (2018). Development and validation of an environmental DNA method for detection of the alligator snapping turtle (Macrochelys temminckii). Chelonian Conservation and Biology 17, 271–279.
Development and validation of an environmental DNA method for detection of the alligator snapping turtle (Macrochelys temminckii).Crossref | GoogleScholarGoogle Scholar |

Fox, G. (2008). Semi-aquatic and aquatic reptiles. In ‘A Compendium of Ecological Information on Australia’s Northern Tropical Rivers. Sub-project 1 of Australia’s Tropical Rivers: an Integrated Data Assessment and Analysis (DET18)’. (Eds G. Lukacs and C. M. Finlayson.) (National Centre for Tropical Wetland Research: Townsville, Qld, Australia.)

Halstead, B. J., Wood, D. A., Bowen, L., Waters, S. C., Vandergast, A. G., Ersan, J. S., Skalos, S. M., and Casazza, M. L. (2017). An evaluation of the efficacy of using environmental DNA (eDNA) to detect giant gartersnakes (Thamnophis gigas). Open-File Report 2017-1123, US Geological Survey, Reston, VA, USA10.3133/OFR20171123

Kelly, R. P., Port, J. A., Yamahara, K. M., and Crowder, L. B. (2014). Using environmental DNA to census marine fishes in a large mesocosm. PLoS One 9, e86175.
Using environmental DNA to census marine fishes in a large mesocosm.Crossref | GoogleScholarGoogle Scholar | 24454960PubMed |

Koziol, A., Stat, M., Simpson, T., Jarman, S., DiBattista, J. D., Harvey, E. S., Marnane, M., McDonald, J., and Bunce, M. (2019). Environmental DNA metabarcoding studies are critically affected by substrate selection. Molecular Ecology Resources 19, 366–376.
Environmental DNA metabarcoding studies are critically affected by substrate selection.Crossref | GoogleScholarGoogle Scholar | 30485662PubMed |

Lacoursière-Roussel, A., Dubois, Y., Normandeau, E., and Bernatchez, L. (2016). Improving herpetological surveys in eastern North America using the environmental DNA method. Genome 59, 991–1007.
Improving herpetological surveys in eastern North America using the environmental DNA method.Crossref | GoogleScholarGoogle Scholar | 27788021PubMed |

Milton, D. A. (2001). Assessing the susceptibility to fishing of populations of rare trawl bycatch: sea snakes caught by Australia’s Northern Prawn Fishery. Biological Conservation 101, 281–290.
Assessing the susceptibility to fishing of populations of rare trawl bycatch: sea snakes caught by Australia’s Northern Prawn Fishery.Crossref | GoogleScholarGoogle Scholar |

Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T., Yamamoto, S., Yamanaka, H., and Araki, H. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science 2, 150088.
MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species.Crossref | GoogleScholarGoogle Scholar | 26587265PubMed |

Nester, G. M., De Brauwer, M., Koziol, A., West, K. M., DiBattista, J. D., White, N. E., Power, M., Heydenrych, M. J., Harvey, E. S., and Bunce, M. (2020). ‘Development and evaluation of fish eDNA metabarcoding assays facilitates the detection of cryptic seahorse taxa (family: Syngnathidae). Environmental DNA 2, 614–626.
‘Development and evaluation of fish eDNA metabarcoding assays facilitates the detection of cryptic seahorse taxa (family: Syngnathidae).Crossref | GoogleScholarGoogle Scholar |

Olds, B. P., Jerde, C. L., Renshaw, M. A., Li, Y., Evans, N. T., Turner, C. R., Deiner, K., Mahon, A. R., Brueseke, M. A., and Shirey, P. D. (2016). Estimating species richness using environmental DNA. Ecology and Evolution 6, 4214–4226.
Estimating species richness using environmental DNA.Crossref | GoogleScholarGoogle Scholar | 27516876PubMed |

Piaggio, A. J., Engeman, R. M., Hopken, M. W., Humphrey, J. S., Keacher, K. L., Bruce, W. E., and Avery, M. L. (2014). Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. Molecular Ecology Resources 14, 374–380.
Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA.Crossref | GoogleScholarGoogle Scholar | 24119154PubMed |

Pusey, B. (2011) ‘Aquatic Biodiversity in Northern Australia: Patterns, Threats and Future.’ (CDU Press: Darwin, NT, Australia.)

Raemy, M., and Ursenbacher, S. (2018). Detection of the European pond turtle (Emys orbicularis) by environmental DNA: is eDNA adequate for reptiles? Amphibia–Reptilia 39, 135–143.
Detection of the European pond turtle (Emys orbicularis) by environmental DNA: is eDNA adequate for reptiles?Crossref | GoogleScholarGoogle Scholar |

Ratnasingham, S., and Hebert, P. D. N. (2007). BOLD: the barcode of life data system (http://www.barcodinglife.org). Molecular Ecology Notes 7, 355–364.
BOLD: the barcode of life data system (http://www.barcodinglife.org).Crossref | http://www.barcodinglife.org).&journal=Molecular Ecology Notes&volume=7&pages=355-364&publication_year=2007&author=S%2E%20Ratnasingham&hl=en&doi=10.1111/J.1471-8286.2007.01678.X" target="_blank" rel="nofollow noopener noreferrer" class="reftools">GoogleScholarGoogle Scholar | 18784790PubMed |

Ratsch, R., Kingsbury, B. A., and Jordan, M. A. (2020). Exploration of environmental DNA (eDNA) to detect Kirtland’s snake (Clonophis kirtlandii). Animals 10, 1057.
Exploration of environmental DNA (eDNA) to detect Kirtland’s snake (Clonophis kirtlandii).Crossref | GoogleScholarGoogle Scholar |

Rolland, J., Silvestro, D., Schluter, D., Guisan, A., Broennimann, O., and Salamin, N. (2018). The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nature Ecology & Evolution 2, 459.
The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity.Crossref | GoogleScholarGoogle Scholar |

Rose, A., Fukuda, Y., and Campbell, H. A. (2020). Using environmental DNA to detect estuarine crocodiles, a cryptic–ambush predator of humans. Human–Wildlife Interactions 14, 11.

Sanders, K. L., Lee, M. S. Y., Bertozzi, T., and Rasmussen, A. R. (2013). Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae). Molecular Phylogenetics and Evolution 66, 575–591.
Multilocus phylogeny and recent rapid radiation of the viviparous sea snakes (Elapidae: Hydrophiinae).Crossref | GoogleScholarGoogle Scholar | 23026811PubMed |

Santidrián Tomillo, P. S., Genovart, M., Paladino, F. V., Spotila, J. R., and Oro, D. (2015). Climate change overruns resilience conferred by temperature-dependent sex determination in sea turtles and threatens their survival. Global Change Biology 21, 2980–2988.
Climate change overruns resilience conferred by temperature-dependent sex determination in sea turtles and threatens their survival.Crossref | GoogleScholarGoogle Scholar |

Sasso, T., Lopes, C. M., Valentini, A., Dejean, T., Zamudio, K. R., Haddad, C. F. B., and Martins, M. (2017). Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: potential application for conservation of a rich and threatened fauna. Biological Conservation 215, 225–232.
Environmental DNA characterization of amphibian communities in the Brazilian Atlantic forest: potential application for conservation of a rich and threatened fauna.Crossref | GoogleScholarGoogle Scholar |

Taberlet, P., Bonin, A., Zinger, L., and Coissac, E. (2018). ‘Environmental DNA: for Biodiversity Research and Monitoring.’ (Oxford University Press: Oxford, UK.)

Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen, M., and Willerslev, E. (2012). Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7, e41732.
Detection of a diverse marine fish fauna using environmental DNA from seawater samples.Crossref | GoogleScholarGoogle Scholar | 22952587PubMed |

Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N., Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J.-M., Peroux, T., Crivelli, A. J., Olivier, A., Acqueberge, M., Le Brun, M., Møller, P. R., Willerslev, E., and Dejean, T. (2016). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Molecular Ecology 25, 929–942.
Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding.Crossref | GoogleScholarGoogle Scholar | 26479867PubMed |

Van Dyke, J. U., Ferronato, B. O., and Spencer, R.-J. (2018). Current conservation status of Australian freshwater turtles. Australian Journal of Zoology 66, 1–3.
Current conservation status of Australian freshwater turtles.Crossref | GoogleScholarGoogle Scholar |

West, K. M., Heydenrych, M., Lines, R., Tucker, T., Fossette, S., Whiting, S., and Bunce, M. (2020). ‘Development of a 16S metabarcoding assay for the environmental DNA (eDNA) detection of aquatic reptiles across northern Australia. bioRxiv , .

Wilcox, T. M., Schwartz, M. K., McKelvey, K. S., Young, M. K., and Lowe, W. H. (2014). A blocking primer increases specificity in environmental DNA detection of bull trout (Salvelinus confluentus). Conservation Genetics Resources 6, 283–284.
A blocking primer increases specificity in environmental DNA detection of bull trout (Salvelinus confluentus).Crossref | GoogleScholarGoogle Scholar |

Wilcox, C., Heathcote, G., Goldberg, J., Gunn, R., Peel, D., and Hardesty, B. D. (2015). Understanding the sources and effects of abandoned, lost, and discarded fishing gear on marine turtles in northern Australia. Conservation Biology 29, 198–206.
Understanding the sources and effects of abandoned, lost, and discarded fishing gear on marine turtles in northern Australia.Crossref | GoogleScholarGoogle Scholar | 25102915PubMed |