Trends and environmental drivers of giant catfish catch in the lower Amazon River
R. E. A. Cruz A F , D. A. Kaplan B , P. B. Santos C , A. O. Ávila-da-Silva D , E. E. Marques E and V. J. Isaac AA Núcleo de Ecologia Aquática e Pesca da Amazônia, Universidade Federal do Pará, Avenuenida Perimetral, 2651, 66070-375, Belém, PA, Brazil.
B Engineering School of Sustainable Infrastructure and Environmental, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6350, USA.
C Universidade Federal do Oeste do Pará, Travessa Major Francisco Maria, 68220-000, Monte Alegre, PA, Brazil.
D Instituto de Pesca, Avenuenida Bartolomeu de Gusmão, 192, 11030-906, Santos, SP, Brazil.
E Universidade Federal do Tocantins, Rua 3, Quadra 17, 77500-000, Porto Nacional, TO, Brazil.
F Corresponding author. Email: araujo.edipo@gmail.com
Marine and Freshwater Research 72(5) 647-657 https://doi.org/10.1071/MF20098
Submitted: 7 April 2020 Accepted: 14 September 2020 Published: 11 November 2020
Abstract
The giant catfishes Brachyplatystoma rousseauxii, Brachyplatystoma vaillantii and Brachyplatystoma filamentosum are important environmental, social and economic resources in the Amazon. However, anthropogenic environmental changes, such as climate change, deforestation, overexploitation of water resources and damming of rivers, threaten the conservation of this fishery. The aims of this study were to investigate temporal trends and elucidate global and regional environmental drivers of catch for these species of giant catfish in the Amazon. Using annualised catch data (1993–2010), we tested for linear trends using Mann–Kendall tests and built multilinear models of fish catch using effort and a variety of regional and global hydrological and meteorological series. We found a significant decline in the catches of B. rousseauxii and B. filamentosum, whereas the B. vaillantii catch increased. Total catch had a significant positive correlation with fishing effort, and variation in sea surface temperature (SST) explained an additional 19–38% of the variability of catches. Other hydrological and climate variables were weakly correlated or uncorrelated with catch. Overall, these results argue strongly for a resumption the collection of fishing statistics in the Amazon. In addition, associations between SST and catch suggest that conservation of these long-distance migrants must consider both regional and global drivers of fisheries change.
Keywords: artisanal fishery, climate change, Pimelodidae, sea surface temperature, time series analysis.
References
Agostinho, A. A., Gomes, L. C., Veríssimo, S., and Okada, E. K. (2004). Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14, 11–19.| Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment.Crossref | GoogleScholarGoogle Scholar |
Akinwande, M. O., Dikko, H. G., and Samson, A. (2015). Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis. Open Journal of Statistics 5, 754–767.
| Variance inflation factor: as a condition for the inclusion of suppressor variable(s) in regression analysis.Crossref | GoogleScholarGoogle Scholar |
Aller, J. Y., and Aller, R. C. (1986). General characteristic of benthic faunas of the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Ser. Continental Shelf Research 6, 291–310.
| General characteristic of benthic faunas of the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Ser.Crossref | GoogleScholarGoogle Scholar |
Almeida, O. T. (2004). Fisheries management in the Brazilian Amazon. Ph.D. Thesis, Imperial College, London, UK.
Almeida, O. T., Lorenzen, K., Mcgrath, D. G., Amara, L., and Rivero, S. (2010). Importância econômica do setor pesqueiro na calha do rio Amazonas-Solimões. Novos Cadernos NAEA 275, 1–14.
Alonso, J. C., and Picker, L. (2005). Dinâmica populacional e estado atual da exploração de piramutaba e de dourada. p. 21-28. In: Fabré, N. N., Barthem, R. B. (Org.) O manejo da pesca dos grandes bagres migradores: piramutaba e dourada no eixo Solimões-Amazonas. IBAMA/ProVárzea, Manaus, Brazil.
Anderson, E. P., Jenkins, C. N., Heilpern, S., Maldonado-Ocampo, J. A., Carvajal-Vallejos, F. M., Encalada, A. C., Rivadeneira, J. F., Hidalgo, M., Cañas, C. M., Ortega, H., Salcedo, N., Maldonado, M., and Tedesco, P. A. (2018). Fragmentation of Andes-to-Amazon connectivity by hydropower dams. Science Advances 4, eaao1642.
| Fragmentation of Andes-to-Amazon connectivity by hydropower dams.Crossref | GoogleScholarGoogle Scholar | 29399629PubMed |
Angelini, R., Fabré, N. N., and Silva, U. L. (2006). Trophic analysis and fishing simulation of the biggest Amazonian catfish. African Journal of Agricultural Research 1, 151–158.
Arias, M. E., Piman, T., Lauri, H., Cochrane, T. A., and Kummu, K. (2014). Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia. Hydrology and Earth System Sciences 18, 5303–5315.
| Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia.Crossref | GoogleScholarGoogle Scholar |
Badjeck, M. C., Allison, E. H., Halls, A. S., and Dulvy, N. K. (2010). Impacts of climate variability and change on fishery-based livelihoods. Marine Policy 34, 375–383.
| Impacts of climate variability and change on fishery-based livelihoods.Crossref | GoogleScholarGoogle Scholar |
Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Barenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Leal, C. G., Isaac, V., Lees, A. C., Parr, C. L., Wilson, S. K., Young, P. J., and Graham, N. A. J. (2018). The future of hyperdiverse tropical ecosystems. Nature 559, 517–526.
| The future of hyperdiverse tropical ecosystems.Crossref | GoogleScholarGoogle Scholar | 30046075PubMed |
Barros, D. F. (2019). A influência das características ambientais e pesqueiras sobre a pesca de áreas de várzea da Amazônia brasileira. Ph.D. Thesis, Federal University of Pará, Belém, Brazil.
Barthem, R. B. (1990). Descrição da pesca da piramutaba (Brachyplatystoma vaillantii. Pimelodidae) no estuário e na calha do rio amazonas. Boletim do Museu Goeldi, N.S. Antropologia 6, 117–130.
Barthem, R. B., and Fabré, N. N. (2004). Biologia e diversidade dos recursos pesqueiros da Amazônia. In ‘A pesca e os recursos pesqueiros na Amazônia Brasileira’. (Ed. M. L. Ruffino.) pp. 17–51. (IBAMA/ProVárzea: Manaus, Brazil.)
Barthem, R., and Goulding, M. (1997). ‘The Catfish Connection. Ecology, Migration and Conservation of Amazon Predators.’ (Columbia University Press: New York, NY, USA.)
Barthem, R. B., and Goulding, M. (2007). ‘An Unexpected Ecosystem: The Amazon Revealed by the Fisheries.’ (Gráfica Biblos: Lima, Peru; Botanical Garden Press: Lima, Perú.)
Barthem, R. B., and Petrere, M. Jr (1995). Fisheries and population dynamics of the freshwater catfish Brachyplatystoma vaillantii in the amazon estuary. In ‘Condition of the World’s Aquatic Habitat. Proceedings of the World Fisheries Congress, Theme 1’ Athens, Greece. (Eds N. B. Armantrout and R. Wolotira.) pp. 329–350. (Oxford & IBH Publishing: New Delhi, India.)
Barthem, R. B., Ribeiro, M. C. L. B., and Petrere, M. (1991). Life strategies of some long-distance migratory catfish in relation to hydroelectric dams in the Amazon Basin. Biological Conservation 55, 339–345.
| Life strategies of some long-distance migratory catfish in relation to hydroelectric dams in the Amazon Basin.Crossref | GoogleScholarGoogle Scholar |
Barthem, R. B., Petrere, M. Jr, Isaac, V. J., Ribeiro, M. C. L. D. B., McGrath, D. G., Vieira, I. J., and Barco, M. V. (1997). A pesca na Amazônia: problemas e perspectivas para o seu manejo. In ‘Manejo e conservação de vida silvestre no Brasil’. (Eds C. Valladares-Pádua and R. E. Bodmer.) pp. 173–185. (MCT/CNPq/Sociedade Civil Mamirauá:Rio de Janeiro, Brazil.)
Barthem, R. B., Mello Filho, A., Assunção, W., Gomes, P. F., and Barbosa, C. A. C. (2015). Estrutura de tamanho e distribuição espacial da piramutaba (Brachyplatystoma vaillantii) na foz Amazônica: implicações para o manejo da pesca. Boletim do Instituto de Pesca 41, 249–260.
Barthem, R., Goulding, M., Leite, R. G., Cañas, C., Forsberg, E. V., Petry, P., Ribeiro, M. L. B., Chuctaya, J., and Mercado, A. (2017). Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles. Scientific Reports 7, 41784.
| Goliath catfish spawning in the far western Amazon confirmed by the distribution of mature adults, drifting larvae and migrating juveniles.Crossref | GoogleScholarGoogle Scholar | 28165499PubMed |
Bartley, D. M., De Graaf, G. J., Valbo-Jorgensen, J., and Marmulla, G. (2015). Inland capture fisheries: status and data issues. Fisheries Management and Ecology 22, 71–77.
| Inland capture fisheries: status and data issues.Crossref | GoogleScholarGoogle Scholar |
Batista, V., Alonso, J. C., Ladle, R. J., and Fabré, N. N. (2018). Drivers of the upper River Amazon giant catfish fishery. Fisheries Management and Ecology 25, 116–126.
| Drivers of the upper River Amazon giant catfish fishery.Crossref | GoogleScholarGoogle Scholar |
Bayley, P. B. (1995). Understanding large river–floodplain ecosystems. Bioscience 45, 153–158.
| Understanding large river–floodplain ecosystems.Crossref | GoogleScholarGoogle Scholar |
Bayley, P. B., and Petrere, M. (1989). Amazon fisheries: assessment methods, current status and management points. In ‘Proceedings of the International Large River Symposium’, 14–21 September 1986, Honey Harbour, ON, Canada. (Ed. D. P Dodge.) Canadian Special Publication of Fisheries and Aquatic Sciences 106, pp. 385–398. (Canadian Government Publishing Centre and Canada Communication Group: Ottawa, ON, Canada.)
Belsley, D. A., Kuh, E., and Welsch, R. E. (2004). ‘Regression Diagnostics: Identifying Influential Data and Sources of Collinearity.’ (Wiley: New York, NY, USA.)
Betts, R., Sanderson, M., and Woodward, S. (2008). Effects of large-scale Amazon forest degradation on climate and air quality through fluxes of carbon dioxide, water, energy, mineral dust and isoprene. Philosophical Transaction the Royal Society 363, 1873–1880.
| Effects of large-scale Amazon forest degradation on climate and air quality through fluxes of carbon dioxide, water, energy, mineral dust and isoprene.Crossref | GoogleScholarGoogle Scholar |
Bonnet, M. P., Barroux, G., Martinez, J. M., Seyler, F., Moreira-Turcq, P., Cochonneau, G., Melack, J. M., Boaventura, G., Maurice-Bourgain, L., León, J. G., Roux, E., Calmant, S., Kosuth, P., Guyot, J. L., and Sayler, P. (2008). Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí). Journal of Hydrology 349, 18–30.
| Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuaí).Crossref | GoogleScholarGoogle Scholar |
Castello, L., and Macedo, M. N. (2016). Large-scale degradation of Amazonian freshwater ecosystems. Global Change Biology 22, 990–1007.
| Large-scale degradation of Amazonian freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar | 26700407PubMed |
Castello, L., McGrath, D. G., Hess, L. L., Coe, M. T., Lefebvre, P. A., Petry, P., Macedo, M. N., Renó, V. F., and Arantes, C. C. (2013). The vulnerability of Amazon freshwater ecosystems. Conservation Letters 6, 217–229.
| The vulnerability of Amazon freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar |
Castello, L., Isaac, V. J., and Thapa, R. (2015). Flood pulse effects on multispecies fishery yields in the Lower Amazon. Royal Society Open Science 2, 150299.
| Flood pulse effects on multispecies fishery yields in the Lower Amazon.Crossref | GoogleScholarGoogle Scholar | 26715994PubMed |
Castro, F., and McGrath, D. (2001). O manejo comunitário de lagos na Amazônia. Parcerias Estratégicas 12, 112–126.
Cleveland, W. S., Grosse, E., and Shyu, W. M. (1992). Local regression models. In ‘Statistical Models in S’. (Eds J. M. Chambers and T. J. Hastie.) pp. 16–28. (Chapman and Hall: New York, NY, USA.)
Cox, P., Harris, P., Huntingford, C., Betts, R. A., Collins, M., Jones, C. D., Jupp, T. E., Marengo, J. A., and Nobre, C. A. (2008). Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453, 212–215.
| Increasing risk of Amazonian drought due to decreasing aerosol pollution.Crossref | GoogleScholarGoogle Scholar | 18464740PubMed |
Cruz, R. E. A. (2020). Pesca, Economia e Migração dos Grandes Bagres na Amazônia. Ph.D. Thesis, Federal University of Pará, Belém, Brazil.
Cruz, R. E. A., Isaac, V. J., and Paes, E. T. (2017). A pesca da dourada Brachyplatystoma rousseauxii (Castelnau, 1855) na região do Baixo Amazonas, Brasil. Boletim do Instituto de Pesca 43, 474–486.
| A pesca da dourada Brachyplatystoma rousseauxii (Castelnau, 1855) na região do Baixo Amazonas, Brasil.Crossref | GoogleScholarGoogle Scholar |
De Graaf, G. (2003). Dynamics of floodplain fisheries in Bangladesh, results of 8 years fisheries monitoring in the compartmentalization pilot project. Fisheries Management and Ecology 10, 191–199.
| Dynamics of floodplain fisheries in Bangladesh, results of 8 years fisheries monitoring in the compartmentalization pilot project.Crossref | GoogleScholarGoogle Scholar |
De Graaf, G., Bartley, D., Jorgensen, J., and Marmulla, G. (2015). The scale of inland fisheries, can we do better? Alternative approaches for assessment. Fisheries Management and Ecology 22, 64–70.
| The scale of inland fisheries, can we do better? Alternative approaches for assessment.Crossref | GoogleScholarGoogle Scholar |
Doria, C. R. D. C., Ruffino, M. L., Hijazi, N. C., and Cruz, R. L. (2012). A pesca comercial na bacia do Rio Madeira no estado de Rondônia, Amazônia brasileira. Acta Amazonica 42, 29–40.
| A pesca comercial na bacia do Rio Madeira no estado de Rondônia, Amazônia brasileira.Crossref | GoogleScholarGoogle Scholar |
Doria, C. R. C., Athayde, S., Marques, E. E., Lima, M. A. L., Dutka-Gianelli, J., Ruffino, M. L., Kaplan, D., Freitas, C. E. C., and Isaac, V. N. (2017). The invisibility of fisheries in the process of hydropower development across the Amazon. Royal Swedish Academy of Sciences 47, 453–465.
| The invisibility of fisheries in the process of hydropower development across the Amazon.Crossref | GoogleScholarGoogle Scholar |
Duponchelle, F., Pouilly, M., Pécheyran, C., Hauser, M., François Renno, J., Panfili, J., Darnaude, A. M., García-Vasquez, A., Carvajal-Vallejos, F., García-Dávila, C., Doria, C., Bérail, S., Donard, A., Sondag, F., Santos, R. V., Nuñez, J., Point, D., Labonne, M., and Baras, E. (2016). Trans-Amazonian natal homing in giant catfish. Journal of Applied Ecology 53, 1511–1520.
| Trans-Amazonian natal homing in giant catfish.Crossref | GoogleScholarGoogle Scholar |
Faraway, J. J. (2006). ‘Extending the Linear Model with R Generalized Linear, Mixed Effects and Nonparametric Regression Models.’ (CRC Press: Boca Raton, FL, USA.)
Fearnside, P. M. (2013). Viewpoint: decision making on amazon dams: politics trumps uncertainty in the Madeira River sediments controversy. Water Alternatives 6, 313–325.
Ferreira, J., Aragão, L. E. O. C., Barlow, J., Barreto, P., Berenguer, E., Bustamante, M., Gardner, T. A., Lees, A. C., Limpa, A., Louzada, R., Parry, L., Peres, C. A., Pompeu, P. S., Tabarelli, M., and Zuanon, J. (2014). Brazil’s environmental leadership at risk. Science 346, 706–707.
| Brazil’s environmental leadership at risk.Crossref | GoogleScholarGoogle Scholar | 25378611PubMed |
Ficke, A. D., Myrick, C. A., and Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17, 581–613.
| Potential impacts of global climate change on freshwater fisheries.Crossref | GoogleScholarGoogle Scholar |
Figueroa, S. N., and Nobre, C. A. (1990). Precipitation distribution over central and western tropical South America. Climanálise 5, 36–45.
Finer, M., and Jenkins, C. N. (2012). Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS One 7, e35126.
| Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity.Crossref | GoogleScholarGoogle Scholar | 22529979PubMed |
Forsberg, B. R., Melack, J. M., Dunne, T., Barthem, R. B., Goulding, M., Paiva, R. C. D., Sorribas, M. V., Silva, U. L., and Weisser, S. (2017). The potential impact of new Andean dams on Amazon fluvial ecosystems. PLoS One 12, e0182254.
| The potential impact of new Andean dams on Amazon fluvial ecosystems.Crossref | GoogleScholarGoogle Scholar | 28832638PubMed |
Frederico, R. G., Olden, J. D., and Zuanon, J. (2016). Climate change sensitivity of threatened, and largely unprotected, Amazonian fishes. Aquatic Conservation 26, 91–102.
| Climate change sensitivity of threatened, and largely unprotected, Amazonian fishes.Crossref | GoogleScholarGoogle Scholar |
Freitas, C. E. C., Rivas, A. A. F., Campos, C. P., Sant’Ana, I., Kahn, J. R., Correa, M. A. M., and Catarino, M. F. (2012). The potential impacts of global climatic changes and dams on Amazonian fish and their fisheries. In ‘New Advances and Contributions to Fish Biology’. (Ed. H. Turker.) pp. 176–195. (InTech.) https://doi.org/10.5772/54549
Gilbert, R. O. (1987). ‘Statistical Methods for Environmental Pollution Monitoring.’ (Wiley: New York, NY, USA.)
Gómez, R. S., Pérez, J. G., Martín, M. D. M. L., and García, C. G. (2016). Collinearity diagnostic applied in ridge estimation through the variance inflation factor. Journal of Applied Statistics 43, 1831–1849.
| Collinearity diagnostic applied in ridge estimation through the variance inflation factor.Crossref | GoogleScholarGoogle Scholar |
Hess, L. L., Melack, J. M., Novo, E. M. L. M., Barbosa, C. C. F., and Gastil, M. (2003). Dual-season mapping of wetland inundation and vegetation for the central Amazon Basin. Remote Sensing of Environment 87, 404–428.
| Dual-season mapping of wetland inundation and vegetation for the central Amazon Basin.Crossref | GoogleScholarGoogle Scholar |
Isaac, V. J., Milstein, A., and Ruffino, M. L. (1996). A pesca artesanal no Baixo Amazonas: Análise multivariada da captura por espécie. Acta Amazonica 26, 185–208.
| A pesca artesanal no Baixo Amazonas: Análise multivariada da captura por espécie.Crossref | GoogleScholarGoogle Scholar |
Isaac, V. J., Silva, C. O., and Ruffino, M. L. (2004). A pesca no Baixo Amazonas. In ‘A Pesca e os Recursos Pesqueiros na Amazonia Brasileira’. (Ed. M. L. Ruffino.) pp. 185– 211. (Edições ProVarzea/IBAMA: Manaus, Brazil.)
Isaac, V., Almeida, M., Cruz, R., and Nunes, L. (2015). Artisanal fisheries of the Xingu River Basin in Brazilian Amazon. Brazilian Journal of Biology 75, 125–137.
| Artisanal fisheries of the Xingu River Basin in Brazilian Amazon.Crossref | GoogleScholarGoogle Scholar |
Isaac, V. J., Castello, L., Santos, P. R. B., and Ruffino, M. L. (2016). Seasonal and interannual dynamics of river–floodplain multispecies fisheries in relation to flood pulses in the Lower Amazon. Fisheries Research 183, 352–359.
| Seasonal and interannual dynamics of river–floodplain multispecies fisheries in relation to flood pulses in the Lower Amazon.Crossref | GoogleScholarGoogle Scholar |
Junk, W. J., Bayley, P. B., and Sparks, R. E. (1989). The flood pulse concept in river–floodplain systems. In ‘Proceedings of the International Large River Symposium’, 14–21 September 1986, Honey Harbour, ON, Canada. (Ed. D. P. Dodge.) Canadian Special Publication of Fisheries and Aquatic Sciences 106, pp. 110–127. (Canadian Government Publishing Centre and Canada Communication Group: Ottawa, ON, Canada.)
Kaplan, D., Muñoz-Carpena, R., and Ritter, A. (2010). Untangling complex shallow groundwater dynamics in the floodplain wetlands of a southeastern US coastal river. Water Resources Research 46, 123–124.
| Untangling complex shallow groundwater dynamics in the floodplain wetlands of a southeastern US coastal river.Crossref | GoogleScholarGoogle Scholar |
Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48, 1161–1172.
| Ecological effects of perturbation by drought in flowing waters.Crossref | GoogleScholarGoogle Scholar |
Latrubesse, E. M., Arima, E. Y., Dunne, T., Park, E., Baker, V. R., d’Horta, F. M., Wight, C., Wittmann, F., Zuanon, J., Baker, P. A., Ribas, C. C., Norgaard, R. B., Filizola, N., Ansar, A., Flyvbjerg, B., and Stevaux, J. C. (2017). Damming the rivers of the Amazon Basin. Nature 546, 363–369.
| Damming the rivers of the Amazon Basin.Crossref | GoogleScholarGoogle Scholar | 28617466PubMed |
Lima, M. A. L., Kaplan, D. A., and Doria, C. R. C. (2017). Hydrological controls of fisheries production in a major Amazonian tributary. Ecohydrology 10, e1899.
| Hydrological controls of fisheries production in a major Amazonian tributary.Crossref | GoogleScholarGoogle Scholar |
Lima, M. A. L., Doria, C. R. C., Carvalho, A. R., and Angelini, R. (2020a). Fisheries and trophic structure of a large tropical river under impoundment. Ecological Indicators 113, 106162.
| Fisheries and trophic structure of a large tropical river under impoundment.Crossref | GoogleScholarGoogle Scholar |
Lima, M. A. L., Carvalho, A. R., Nunes, M. A., Angelini, R., and Doria, C. R. C. (2020b). Declining fisheries and increasing prices: the economic cost of tropical rivers impoundment. Fisheries Research 221, 105399.
| Declining fisheries and increasing prices: the economic cost of tropical rivers impoundment.Crossref | GoogleScholarGoogle Scholar |
Lowe-McConnell, R. H. (1987). ‘Ecological Studies in Tropical Fish Communities.’ (Cambridge University Press: Cambridge, UK.)
Luiz, E. A., Agostinho, A. A., Gomes, L. C., and Hahn, N. S. (1998). Ecologia trófica de peixes em dois riachos da Bacia do Rio Paraná. Revista Brasileira de Biologia 58, 273–285.
Lynch, A. J., Cooke, S. J., Deines, A. M., Bower, S. D., Bunnell, D. B., Cowx, I. G., Nguyen, V. M., Nohner, J., Phouthvong, K., Riley, B., Rogers, M. W., Taylor, W. W., Woelmer, W., Youn, S. J., and Beard, D. B. (2016). The social, economic, and environmental importance of inland fish and fisheries. Environmental Reviews 24, 115–121.
| The social, economic, and environmental importance of inland fish and fisheries.Crossref | GoogleScholarGoogle Scholar |
Marengo, J., Nobre, C. A., Tomasella, J., Cardoso, M., and Oyama, M. D. (2008a). Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Transactions the Royal Society 363, 1773–1778.
| Hydro-climatic and ecological behaviour of the drought of Amazonia in 2005.Crossref | GoogleScholarGoogle Scholar |
Marengo, J. A., Nobre, C., Tomasella, J., Oyama, M., Sampaio, G., Oliveira, R., Camargo, H., Alves, L., and Brown, F. (2008b). The drought of Amazonia in 2005. Journal of Climate 21, 495–516.
| The drought of Amazonia in 2005.Crossref | GoogleScholarGoogle Scholar |
Marengo, J. A., Tomasella, J., Alves, L., Soares, W., and Rodriguez, D. (2011). The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical Research Letters 38, L12703.
| The drought of 2010 in the context of historical droughts in the Amazon region.Crossref | GoogleScholarGoogle Scholar |
Ministério da Pesca e Aquicultura 2013. ‘Boletim estatístico de pesca e aquicultura do Brasil 2011.’ (MPA: Brasília, Brazil.)
Moses, B. S. (1987). The influence of flood regime on fishcatch and fish communities of the Cross Riverfloodplain ecosystem, Nigeria. Environmental Biology of Fishes 18, 51–65.
| The influence of flood regime on fishcatch and fish communities of the Cross Riverfloodplain ecosystem, Nigeria.Crossref | GoogleScholarGoogle Scholar |
Nootmorn, P., Sumontha, M., Keereerut, P., Jayasinghe, R. P. P. S., Jagannath, N., and Sinha, M. K. (2008). Stomach content of the large pelagic fishes in the Bay of Bengal. In ‘The Ecosystem-Based Fishery Management in the Bay of Bengal’. pp. 206–220. (Ministry of Agriculture and Cooperatives: Bangkok, Thailand.) Available at https://www.iotc.org/documents/stomach-content-large-pelagic-fishes-bay-bengal [Verified 4 October 2020].
Oyama, M. D., and Nobre, C. A. (2003). A new climate–vegetation equilibrium state for tropical South America. Geophysical Research Letters 30, 2199.
| A new climate–vegetation equilibrium state for tropical South America.Crossref | GoogleScholarGoogle Scholar |
Parente, V. M., Farias, V. E., Carvalho, A. R., and Fabré, N. N. (2005). A pesca e a economia de bagres no eixo Solimões-Amazonas. In ‘O manejo da pesca dos grandes bagres migradores: Piramutaba e Dourada no eixo Solimões-Amazonas’. (Eds N. N. Fabré and R. B. Barthem.) pp. 21–28. (Provárzea/IBAMA: Manaus, Brazil.)
Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., Watson, R., and Zeller, D. (2002). Towards sustainability in world fisheries. Nature 418, 689–695.
| Towards sustainability in world fisheries.Crossref | GoogleScholarGoogle Scholar | 12167876PubMed |
Pauly, D., Warson, R., and Alder, J. (2005). Global trends in world fisheries: impacts on marine ecosystems and food security. Philosophical Transactions of the Royal Society 360, 5–12.
| Global trends in world fisheries: impacts on marine ecosystems and food security.Crossref | GoogleScholarGoogle Scholar |
Pavlovic, M., Simonovic, P., Stojkovic, M., and Simic, V. (2015). Analysis of diet of piscivorous fishes in Bovan, Gruza and Sumarice Reservoir, Serbia. Iranian Journal of Fisheries Science 14, 908–923.
Petrere, M. (1985). A pesca comercial no rio Solimões-Amazonas e seus afluentes: análise dos informes do pescado desembarcado no Mercado Municipal de Manaus (1976–1978). Ciencia e Cultura 37, 1987–1999.
Petrere, M., Barthem, R. B., Córdoba, E. A., and Gómez, B. C. (2004). Review of the large catfish fisheries in the upper Amazon and the stock depletion of piraíba (Brachyplatystoma filamentosum Lichtenstein). Reviews in Fish Biology and Fisheries 14, 403–414.
| Review of the large catfish fisheries in the upper Amazon and the stock depletion of piraíba (Brachyplatystoma filamentosum Lichtenstein).Crossref | GoogleScholarGoogle Scholar |
Petrere, M., Giacomini, H. C., and De Marco, P. (2010). Catch-per-unit-effort: which estimator is best? Brazilian Journal of Biology 70, 483–491.
| Catch-per-unit-effort: which estimator is best?Crossref | GoogleScholarGoogle Scholar |
Pinaya, W. H. D., Lobon-Cervia, F. J., Pita, P., Buss De Souza, R., Freire, J., and Isaac, V. J. (2016). Multispecies fisheries in the Lower Amazon River and its relationship with the regional and global climate variability. PLoS One 11, e0157050.
| Multispecies fisheries in the Lower Amazon River and its relationship with the regional and global climate variability.Crossref | GoogleScholarGoogle Scholar |
Pinaya, W. H. D., Pita, P., Buss De Souza, R., Lobon-Cervia, F. J., Freire, J., and Isaac, V. J. (2018). The catfish fishing in the Amazon floodplain lakes. Oceanography & Fisheries Open Access Journal 7, 555720.
| The catfish fishing in the Amazon floodplain lakes.Crossref | GoogleScholarGoogle Scholar |
Ruffino, M. L. (2014). Status and trends of the fishery resources of the Amazon Basin in Brazil. Inland fisheries evolution and management. Case studies from four continents. FAO Technical Paper, Food and Agriculture Organization of the United Nations, Rome, Italy.
Santos, R. E., Pinto-Coelho, R. M., Fonseca, R., Simões, N. R., and Zanchi, F. B. (2018). The decline of fisheries on the Madeira River, Brazil: the high cost of the hydroelectric dams in the Amazon Basin. Fisheries Management and Ecology 25, 380–391.
| The decline of fisheries on the Madeira River, Brazil: the high cost of the hydroelectric dams in the Amazon Basin.Crossref | GoogleScholarGoogle Scholar |
Stenseth, N. C., Mysterud, A., Ottersen, J. W., Hurrell, K. S., and Chan, M. O. (2002). Ecological effects of climate fluctuations. Science 297, 1292–1296.
| Ecological effects of climate fluctuations.Crossref | GoogleScholarGoogle Scholar | 12193777PubMed |
Timpe, K., and Kaplan, D. (2017). The changing hydrology of a dammed Amazon. Science Advances 3, e1700611.
| The changing hydrology of a dammed Amazon.Crossref | GoogleScholarGoogle Scholar | 29109972PubMed |
Vazzoler, A. E. M. M. (1996). ‘Biologia da reprodução de peixes teleósteos: Teoria e prática.’ (EDUEM: Maringá, Brazil.)
Venables, W. N., and Ripley, B. D. (2002). ‘Modern Applied Statistics with S.’ 4th edn. (Springer-Verlag: New York, NY, USA.)
Visser, M. E., and Both, C. (2005). Shifts in phenology due to global climate change: the need for a yardstick. Proceedings. Biological Sciences 272, 2561–2569.
| Shifts in phenology due to global climate change: the need for a yardstick.Crossref | GoogleScholarGoogle Scholar | 16321776PubMed |
Welcomme, R. L. (1985). ‘River Fisheries.’ (Food and Agriculture Organization of the United Nations: Rome, Italy.)
Welcomme, R. L., Cowx, I. G., Coates, D., Béné, C., Funge-Smith, S., Halls, A., and Lorenzen, K. (2010). Inland capture fisheries. Philosophical Transsactions of the Royal Society 365, 2881–2896.
| Inland capture fisheries.Crossref | GoogleScholarGoogle Scholar |
Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., and Stiassny, M. L. J. (2016). Balancing hydropower and biodiversity in the Amazon, Congo and Mekong. Science 351, 128–129.
| Balancing hydropower and biodiversity in the Amazon, Congo and Mekong.Crossref | GoogleScholarGoogle Scholar | 26744397PubMed |
Wootton, R. J. (1998). ‘Ecology of Teleost Fishes’, 2nd edn. (Kluwer Academic Publishers: Dordrecht, Netherlands.)
Yoon, J. H., and Zeng, N. (2010). An Atlantic influence on Amazon rainfall. Climate Dynamics 34, 249–264.
| An Atlantic influence on Amazon rainfall.Crossref | GoogleScholarGoogle Scholar |
Yue, S., and Pilon, P. (2004). A comparison of the power of the t test, Mann–Kendall and bootstrap tests for trend detection. Hydrological Sciences Journal 49, 21–37.
| A comparison of the power of the t test, Mann–Kendall and bootstrap tests for trend detection.Crossref | GoogleScholarGoogle Scholar |
Yue, S., Pilon, P. J., Phinney, B., and Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrological Processes 16, 1807–1829.
| The influence of autocorrelation on the ability to detect trend in hydrological series.Crossref | GoogleScholarGoogle Scholar |