Using models to inform water policy in a changing climate: comparing the Australian and Uruguayan experiences
A. Silvarrey Barruffa A B C , R. Faggian A , V. Sposito A and M. Duarte Guigou BA Deakin University, Centre for Regional and Rural Futures, 224 Burwood Highway, Burwood, Vic. 3125, Australia.
B Programa de Ingeniería Ambiental, Facultad de Ingeniería y Tecnologías, Universidad Católica del Uruguay, Avenida 8 de Octubre 2738, CP 11600, Montevideo, Uruguay.
C Corresponding author. Email: alejo.silvarrey@gmail.com
Marine and Freshwater Research 72(2) 275-287 https://doi.org/10.1071/MF19266
Submitted: 29 July 2019 Accepted: 28 May 2020 Published: 28 July 2020
Abstract
Mitigating the expansion of harmful cyanobacterial blooms in Uruguayan catchments is a major challenge facing researchers and decision makers. To make matters worse, these events are expected to occur more often as the climate changes. Taking Australia’s experience as an example, minimising the effect of algal blooms involves a range of catchment land use policy and regulatory measures that are underpinned by comprehensive monitoring systems, hydrological modelling platforms and land suitability analysis considering the effects of climate change. The lack of these technological tools means that policies and regulations cannot be implemented effectively. In this paper, we analyse the effects of climate change on Laguna Del Sauce Catchment (Uruguay) and discuss the effects of a possible new land use configuration defined using approaches typically used in Australia. We identify that the likely future of the catchment, according to biophysical modelling, is in conflict with its likely future as defined by its existing land use trajectory and associated agricultural policy. Our analysis provides new insights into the possible effects of climate change on Laguna Del Sauce, and thus fills an important knowledge gap to inform and amend the current policies and institutional frameworks.
Additional keywords: catchment management, climate change, eutrophication, water quality.
References
Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Matheyet, T., Ramos, M. H., and Valéry, A. (2009). Crash tests for a standardized evaluation of hydrological models. Hydrology and Earth System Sciences 13, 1757–1764.| Crash tests for a standardized evaluation of hydrological models.Crossref | GoogleScholarGoogle Scholar |
Barlow, K. B., Christy, B., and Weeks, A. (2009). Nutrient generation and transport at the catchment scale. In ‘18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings’, 13–17 July 2009, Cairns, Qld, Australia. (Eds R. S. Anderssen, R. D. Braddock, and L. T. H. Newham.) pp. 1823–1829. (Modelling and Simulation Society of Australia and New Zealand and International Association for Mathematics and Computers in Simulation.) Available at https://mssanz.org.au/modsim09/F3/barlow_kb.pdf [Verified 18 July 2020].
Bartley, R., Speirs, W. J., Ellis, T. W., and Waters, D. K. (2012). A review of sediment and nutrient concentration data from Australia for use in catchment water quality models. Marine Pollution Bulletin 65, 101–116.
| A review of sediment and nutrient concentration data from Australia for use in catchment water quality models.Crossref | GoogleScholarGoogle Scholar | 21889170PubMed |
Berg, M., and Sutula, M. (2015). Factors affecting growth of cyanobacteria, with special emphasis on the Sacramento–San Joaquin Delta. SCCWRP Technical Report 869. (Southern California Coastal Water Research Project.) Available at http://ftp.sccwrp.org/pub/download/DOCUMENTS/TechnicalReports/0869_FactorsAffectingCyanobacteriaGrowth_Abstract.pdf [Verified 18 July 2020].
Bianchi, P., Taveira, G., Inda, H., and Manfred, S. (2016). Aportes para la rehabilitación de la Laguna del Sauce y el ordenamiento territorial de su cuenca Instituto Sudamericano para Estudios sobre Resiliencia y Sostenibilidad (SARAS2)-2018. (Hugo Inda: Montevideo, Uruguay.) Available at http://saras-institute.org/wp-content/uploads/2019/06/Capitulo-5_Capitulo-5_Ordenamiento-y-planificacin-territorial-en-el-contexto.pdf [Verified 28 November 2013].
Blyth, J., Cetin, L., and Easton, S. (2018). Water quality modelling of the Ruamahanga Catchment. Available at http://www.gwrc.govt.nz/assets/Ruamahanga-Whaitua/FINALJacobs-Ruamahanga-Baseline-Model-Report.pdf [Verified 28 November 2019].
Bouaïcha, N., and Corbel, S. (2016). Cyanobacterial toxins emerging contaminants in soils: a review of sources, fate and impacts on ecosystems, plants and animal and human health. In ‘Soil Contamination – Current Consequences and Further Solutions’. (Eds M. L. Larramendy and S. Soloneski.) (IntechOpen.)
Brodie, J. E., and Mitchell, A. W. (2005a). Sediments and nutrients in north Queensland tropical streams: changes with agricultural development and pristine condition status. ACTFR Report number 05/05, Australian Centre for Tropical Freshwater Research, Townsville, Qld, Australia.
Carpenter, S. R. (2008). Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences of the United States of America 105, 11039–11040.
| Phosphorus control is critical to mitigating eutrophication.Crossref | GoogleScholarGoogle Scholar | 18685114PubMed |
Catherine, A., Mouillot, D., Maloufi, S., Troussellier, M., and Bernard, C. (2013). Projecting the impact of regional land-use change and water management policies on lake water quality: an application to periurban lakes and reservoirs. PLoS One 8, e72227.
| Projecting the impact of regional land-use change and water management policies on lake water quality: an application to periurban lakes and reservoirs.Crossref | GoogleScholarGoogle Scholar | 23991066PubMed |
Chislock, M. F., Doster, E., Zitomer, R. A., and Wilson, A. E. (2013). Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nature Education Knowledge 4, 10.
Cook, P., Holland, D., and Longmore, A. (2008). Interactions between phytoplankton dynamics, nutrient loads and the biogeochemistry of the Gippsland Lakes. A report prepared for the Gippsland Lakes Taskforce. Available at http://www.loveourlakes.net.au/wp-content/uploads/2015/05/Interactions_between_phytoplankton_dynamics_nutrient_loads_and_the_biogeochemistry_of_the_Gippsland_Lakes.pdf [Verified 5 June 2020].
Delgado, P., Kelley, P., Murray, N., and Satheesh, A. (2018). eWater Source user guide. Available at https://wiki.ewater.org.au/display/SD37/Source+User+Guide [Verified 13 November 2018].
Delpla, I., Jung, A. V., Baures, E., Clement, M., and Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International 35, 1225–1233.
| Impacts of climate change on surface water quality in relation to drinking water production.Crossref | GoogleScholarGoogle Scholar | 19640587PubMed |
Faggian, R., Johnson, M., Sposito, V., and Romeijn, H. (2016a). Climate smart agricultural development technical report – forestry production. Available at http://www.gbga.com.au/uploads/8/4/3/6/84367754/gb_csad_-_forestry_technical_report_final.pdf [Verified 13 January 2020].
Faggian, R., Johnson, M., Sposito, V., and Romeijn, H. (2016b). Climate smart agricultural development technical report – pasture production. (Food and Agriculture Organization of the United Nations.) Available at http://www.gbga.com.au/uploads/8/4/3/6/84367754/gb_csad_-_pasture_technical_report_final.pdf [Verified 20 January 2015].
Food and Agriculture Organization of the United Nations (1976). Chapter 3: Land suitability classifications. In A framework for land evaluation. Soils Bulletin 32. (Food and Agriculture Organization of the United Nations.) Available at http://www.fao.org/3/x5310e/x5310e00.htm [Verified 18 July 2020].
Food and Agriculture Organization of the United Nations (2015). Atlas de Cobertura del Suelo del Uruguay. (FAO: Montevideo, Uruguay.) Available at http://www.fao.org/3/a-i4372s.pdf [Verified 12 November 2018].
Fraterrigo, J. M., and Downing, J. A. (2008). The influence of land use on lake nutrients varies with watershed transport capacity. Ecosystems 11, 1021–1034.
| The influence of land use on lake nutrients varies with watershed transport capacity.Crossref | GoogleScholarGoogle Scholar |
Haakonsson, S., Rodríguez Gallego, L., Somma, A., and Bonilla, S. (2017). Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems. The Science of the Total Environment 609, 1132–1139.
| Temperature and precipitation shape the distribution of harmful cyanobacteria in subtropical lotic and lentic ecosystems.Crossref | GoogleScholarGoogle Scholar | 28787786PubMed |
Hallegraeff, G. M. (1992). Harmful algal blooms in the Australian region. Marine Pollution Bulletin 25, 186–190.
| Harmful algal blooms in the Australian region.Crossref | GoogleScholarGoogle Scholar |
Hargreaves, G. H., and Allen, R. G. (2003). History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering 129, 53–63.
| History and evaluation of Hargreaves evapotranspiration equation.Crossref | GoogleScholarGoogle Scholar |
Harmel, D., Potter, S., Casebolt, P., Reckhow, K., Green, C., and Haney, R. (2006). Compilation of measured nutrients load data for agriculture land uses in the United States. Journal of the American Water Resources Association 42, 1163–1178.
| Compilation of measured nutrients load data for agriculture land uses in the United States.Crossref | GoogleScholarGoogle Scholar |
Havens, K. (2012). Effects of climate change on the eutrophication of lakes and estuaries. SGEF-189, University of Florida. Available at https://edis.ifas.ufl.edu/pdffiles/SG/SG12700.pdf [Verified 12 November 2018].
Hebblethwaite, J. F., and Somody, C. N. (2008). Progress in best management practices. In ‘The Triazine Herbicides’. (Eds H. M. LeBaron, J. E. McFarland, and O. C. Burnside.) pp. 501–517. (Elsevier.)
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
| Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |
Hutton, S. A., Harrison, S. S. C., and O’Halloran, J. (2008). An evaluation of the role of forests and forest practices in the eutrophication and sedimentation of receiving waters. Water Framework Directive. (Western River Basin District.) Available at http://www.wfdireland.ie/docs/22_ForestAndWater/Forest%20and%20water%20Eutrophication_Sedimentation%20Literature%20review%20.pdf [Verified 17 December 2018].
Jacobs, T. C., and Gilliam, J. W. (1985). Riparian losses of nitrate from agricultural drainage waters. Journal of Environmental Quality 14, 472–478.
| Riparian losses of nitrate from agricultural drainage waters.Crossref | GoogleScholarGoogle Scholar |
Jeppesen, E., Moss, B., Bennion, H., Carvalho, L., DeMeester, L., Feuchtmayr, H., Friberg, N., Gessner, M. O., Hefting, M., Lauridsen, T. L., Liboriussen, L., Malmquist, H. J., May, L., Meerhoff, M., Olafsson, J. S., Soons, M. B., and Verhoeven, J. T. A. (2010). Interaction of climate change and eutrophication. In ‘Climate Change Impacts on Freshwater Ecosystems’. (Eds M. Kernan, R. W. Battarbee, and B. Moss.) pp. 119–151. (Wiley–Blackwell: Oxford, UK.)
Lenderink, G., Buishand, A., and Van Deursen, W. (2007). Estimates of future discharges of the River Rhine using two scenario methodologies: direct versus delta approach. Hydrology and Earth System Sciences 11, 1145–1159.
| Estimates of future discharges of the River Rhine using two scenario methodologies: direct versus delta approach.Crossref | GoogleScholarGoogle Scholar |
Lewis, W. M., Melack, J. M., McDowell, W. H., McClain, M., and Richey, J. E. (1999). Nitrogen yields from undisturbed watersheds in the Americas. Biogeochemistry 46, 149–162.
| Nitrogen yields from undisturbed watersheds in the Americas.Crossref | GoogleScholarGoogle Scholar |
Ministerio de Ganaderia Agricultura y Pesca (2018). Análisis sectorial y cadenas productivas, Temas de politica y estudios. Anuario OPYPA 2019, Vol. 27. (MGAP: Montevideo, Uruguay.) Available at https://descargas.mgap.gub.uy/OPYPA/Anuarios/Anuario%202018/ANUARIO%20OPYPA%202018%20WEB%20con%20v%C3%ADnculo.pdf [Verified 18 July 2020].
Ministerio de Vivienda Ordenamiento Territorial y Medio Ambiente (2015). Plan de acción para la protección de la calidad ambiental y la disponibilidad como fuente de agua potable de la cuenca hidrilogica de la Laguna del Sauce. (MVOTMA: Montevideo, Uruguay.) Available at https://mvotma.gub.uy/component/k2/item/10010634-plan-de-accion-para-la-proteccion-de-la-calidad-ambiental-y-la-disponibilidad-como-fuente-de-agua-potable-de-la-cuenca-hidrologica-de-la-laguna-del-sauce [Verified 16 April 2016].
Mitchell, A., Reghenzani, J., Faithful, J., Furnas, M., and Brodie, J. (2009). Relationships between land use and nutrient concentrations in streams draining a ‘wet-tropics’ catchment in northern Australia. Marine and Freshwater Research 60, 1097–1108.
| Relationships between land use and nutrient concentrations in streams draining a ‘wet-tropics’ catchment in northern Australia.Crossref | GoogleScholarGoogle Scholar |
Moss, B. (2011). Allied attack: climate change and eutrophication. Inland Waters 1, 101–105.
| Allied attack: climate change and eutrophication.Crossref | GoogleScholarGoogle Scholar |
Murray–Darling Basin Authority (2015). Hydrological modelling using Source. (Department of Environment, Land, Water and Planning: Melbourne, Vic., Australia.) Available at https://www.water.vic.gov.au/water-reporting/surface-water-modelling/hydrological-modelling-using-ewater-source [Verified 18 July 2020].
Nagy, G., Bidegain, M., Verocai, J., and de los Santos, B. (2018). Escenarios climáticos futuros sobre Uruguay. Basados en los nuevos escenarios socioeconómicos RCP. Ministerio De Vivienda, Ordenamiento Territorial y Medio Ambiente (MVOTMA), División de Cambio Climático (DCC), Uruguay.
Narbondo, S., Crisci, M., and Chretis, C. (2018). Modelación Hidrológica Diaria en Cuencas con Diferentes Características de Uruguay. In ‘Hidrología Superficial y Subterránea’, 18–21 September 2018, Buenos Aires, Argentina. (Eds E. A. Lecertua, L. Castro, J. Bernal, M. Morale, N. Ortíz, and M. Vullo.) pp. 1032–1041. (Instituto Nacional del Agua.) Available at https://www.ina.gob.ar/congreso_hidraulica/Congreso_libro/TC_TEMA_2.pdf [Verified 18 July 2020].
Ozulu, I., M., , and Gökgöz, T. (2018). Geo-information examining the stream threshold approaches used in hydrologic analysis. ISPRS International Journal of Geo-Information 7, 201.
| Geo-information examining the stream threshold approaches used in hydrologic analysis.Crossref | GoogleScholarGoogle Scholar |
Paerl, H. (2008). Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater–marine continuum. Advances in Experimental Medicine and Biology 619, 217–237.
| Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater–marine continuum.Crossref | GoogleScholarGoogle Scholar | 18461771PubMed |
Paerl, H. W., and Huisman, J. (2008). Climate: blooms like it hot Science 320, 57–58.
| Climate: blooms like it hotCrossref | GoogleScholarGoogle Scholar | 18388279PubMed |
Paerl, H. W., and Huisman, J. (2009). Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1, 27–37.
| Climate change: a catalyst for global expansion of harmful cyanobacterial blooms.Crossref | GoogleScholarGoogle Scholar | 23765717PubMed |
Reichwaldt, E. S., and Ghadouani, A. (2012). Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics Water Research 46, 1372–1393.
| Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamicsCrossref | GoogleScholarGoogle Scholar | 22169160PubMed |
Romeijn, H., Faggian, R., Diogo, V., and Sposito, V. (2016). Evaluation of deterministic and complex analytical hierarchy process methods for agricultural land suitability analysis in a changing climate. ISPRS International Journal of Geo-Information 5, 99.
| Evaluation of deterministic and complex analytical hierarchy process methods for agricultural land suitability analysis in a changing climate.Crossref | GoogleScholarGoogle Scholar |
Saaty, R. W. (1987). The analytic hierarchy process – what it is and how it is used. Mathematical Modelling 9, 161–176.
| The analytic hierarchy process – what it is and how it is used.Crossref | GoogleScholarGoogle Scholar |
Sarma, T. A. (2012). ‘Handbook of Cyanobacteria.’ (CRC Press: Boca Raton, FL, USA.)
Savci, S. (2012). Investigation of effect of chemical fertilizers on environment. APCBEE Procedia 1, 287–292.
| Investigation of effect of chemical fertilizers on environment.Crossref | GoogleScholarGoogle Scholar |
Schmidli, J., Frei, C., and Vidale, P. L. (2006). Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. International Journal of Climatology 26, 679–689.
| Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods.Crossref | GoogleScholarGoogle Scholar |
South American Institute for Resilience and Sustainability Studies (2010). Bases técnicas para el manejo integrado de Laguna del Sauce y cuenca asociada. (Eds S. Manfred and H. Inda.). (SARAS: Montevideo, Uruguay.) Available at http://saras-institute.org/wp-content/uploads/2019/06/laguna_del_sauce.pdf [Verified 18 July 2020].
Storr, E., Adams, R., and Western, A. (2011). How can data from headwater catchments be used to improve runoff and nutrient predictions at larger scales? In ‘Proceedings of MODSIM2011, 19th International Congress on Modelling and Simulation’, 12–16 December 2011, Perth, WA, Australia. (Eds F. Chan, D. Marinova, and R. S. Anderssen.) pp. 2381–2387. (Modelling and Simulation Society of Australia and New Zealand.) Available at https://mssanz.org.au/modsim2011/E12/storr.pdf [Verified 19 November 2018].
Teutschbein, C., and Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. Journal of Hydrology 456–457, 12–29.
| Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods.Crossref | GoogleScholarGoogle Scholar |
Trenberth, K. E., Dai, A., Rasmussen, R. M., Parsons, D. B., Trenberth, K. E., Dai, A., Rasmussen, R. M., and Parsons, D. B. (2003). The changing character of precipitation. Bulletin of the American Meteorological Society 84, 1205–1218.
| The changing character of precipitation.Crossref | GoogleScholarGoogle Scholar |
US Environmental Protection Agency (2008). Learn about cyanobacteria and cyanotoxins. Available at https://www.epa.gov/cyanohabs/learn-about-cyanobacteria-and-cyanotoxins [Verified 16 August 2017].
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., and Hibbard, K., (2011). The representative concentration pathways: an overview. Climatic Change 109, 5–31.
| The representative concentration pathways: an overview.Crossref | GoogleScholarGoogle Scholar |
Vidal, L., and Kruk, C. (2008). Cylindrospermopsis raciborskii (Cyanobacteria) extends its distribution to Latitude 34°53′S: taxonomical and ecological features in Uruguayan eutrophic lakes. Pan-American Journal of Aquatic Sciences 3, 142–151.
Waters, D. K., Jiao, F., Chen, M. D., Yng, J. D., Pape, S., Zhang, H. J., Li, J., and Nash, D. (2012). Application of Source IMS to investigate nutrient management options for the Dongshan Peninsula, China. (eWater Cooperative Research Centre.) Available at http://www.ewater.org.au/uploads/files/R1206-Waters-Jiao-Chen-Yng-Pape-Zhang-Li-Nash.pdf [Verified 22 November 2017].
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., and Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal 54, 101–123.
| A review of the potential impacts of climate change on surface water quality.Crossref | GoogleScholarGoogle Scholar |
Young, W. J., Marston, F. M., and Davis, R. J. (1996). Nutrient exports and land use in Australian catchments. Journal of Environmental Management 47, 165–183.
| Nutrient exports and land use in Australian catchments.Crossref | GoogleScholarGoogle Scholar |