Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effect of salinity and food concentration on competition between Brachionus plicatilis Müller, 1786 and Brachionus calyciflorus Pallas, 1776 (Rotifera)

N. S. Ferrando A C , S. Nandini B , M. C. Claps A and S. S. S. Sarma B
+ Author Affiliations
- Author Affiliations

A Instituto de Limnología Dr Raúl A. Ringuelet (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata), Boulevard 120 y 62, 1900 La Plata, Provincia de Buenos Aires, Argentina.

B Laboratorio de Zoología Acuática, Edificio Unidad de Ciencias Morfológicas Universidad Nacional Autónoma de México, Campus Iztacala, Avenida de los Barrios 1, Los Reyes, Estado de México CP 54090, México.

C Corresponding author. Email: nferrando@ilpla.edu.ar

Marine and Freshwater Research 71(4) 493-504 https://doi.org/10.1071/MF18403
Submitted: 19 October 2018  Accepted: 21 May 2019   Published: 20 August 2019

Abstract

Natural populations of planktonic rotifers are affected by salinity and food density, among other stressors. Moreover, competition among congeneric species limits the abundance of certain rotifers in ecosystems without spatial heterogeneity and environmental fluctuations. We isolated Brachionus plicatilis and Brachionus calyciflorus from Salado River basin waterbodies and studied the demographic characteristics and competition between them at three salinity levels (0.75, 1.75 and 2.75 g L–1 NaCl) and at two food concentrations (0.1 × 106 and 0.5 × 106 cells mL–1 Chlorella vulgaris). The lowest salinity level proved to be unfavourable for the population growth of B. plicatilis, but at higher salinity levels the growth was similar to that of controls (without competition), even in the presence of the competitor and at either food concentration. By contrast, the competitor almost always decreased the density of B. calyciflorus. Salinity greatly affected the peak density of B. plicatilis, whereas the effects of salinity and competition on B. calyciflorus were similar. Biomass was inversely related to salinity for both species, and was significantly affected by competition in B. plicatilis. These results show that B. calyciflorus is more adversely affected than B. plicatilis by competition and high salinity, and explain why both species can coexist in eutrophic saline lowland rivers and pampean shallow lakes.

Additional keywords: food density, growth rates, plankton, rotifers.


References

Anitha, P. S., Sabu, A. S., and George, R. M. (2016). Reproductive rate of Brachionus calyciflorus under the influence of salinity, temperature, feed type and feed concentration. International Journal of Fisheries and Aquatic Studies 4, 219–226.

Aránguiz-Acuña, A., and Ramos-Jiliberto, R. (2014). Diapause may promote coexistence of zooplankton competitors. Journal of Plankton Research 36, 978–988.
Diapause may promote coexistence of zooplankton competitors.Crossref | GoogleScholarGoogle Scholar |

Ardohain, D., Benítez, H., Claps, M., and Gabellone, N. (2005). Estructura y dinámica de rotíferos planctónicos en dos lagunas pampásicas: similitudes y diferencias. BiologiaAcuatica 22, 7–18.

Balzarini, M. G., Gonzalez, L., Tablada, M., Casanoves, F., Di Rienzo, J. A., and Robledo, C. W. (2008). ‘Infostat. Manual del Usuario.’ (Editorial Brujas: Córdoba, Argentina.)

Bazzuri, M. E., Gabellone, N. A., and Solari, L. (2018). The effects of hydraulic works and wetlands function in the Salado River basin (Buenos Aires, Argentina). Environmental Monitoring and Assessment 190, 99.
The effects of hydraulic works and wetlands function in the Salado River basin (Buenos Aires, Argentina).Crossref | GoogleScholarGoogle Scholar | 29374369PubMed |

Borowitzka, M. A., and Borowitzka, L. J. (1988). ‘Micro-algal Biotechnology.’ (Cambridge University Press: Cambridge, UK.)

Bosque, T., Hernández, R., Pérez, R., Todolí, R., and Oltra, R. (2001). Effects of salinity, temperature and food level on the demographic characteristics of the seawater rotifer Synchaeta littoralis Rousselet. Journal of Experimental Marine Biology and Ecology 258, 55–64.
Effects of salinity, temperature and food level on the demographic characteristics of the seawater rotifer Synchaeta littoralis Rousselet.Crossref | GoogleScholarGoogle Scholar | 11239625PubMed |

Ciros-Pérez, J., Carmona, M. J., and Serra, M. (2001). Resource competition between sympatric sibling rotifer species. Limnology and Oceanography 46, 1511–1523.
Resource competition between sympatric sibling rotifer species.Crossref | GoogleScholarGoogle Scholar |

Claps, M., Gabellone, N., and Neschuk, N. (2009). Influence of regional factors on zooplankton structure in a saline lowland river: the Salado River (Buenos Aires, Argentina). River Research and Applications 25, 453–471.
Influence of regional factors on zooplankton structure in a saline lowland river: the Salado River (Buenos Aires, Argentina).Crossref | GoogleScholarGoogle Scholar |

Claps, M. C., Gabellone, N. A., and Benítez, H. H. (2011). Seasonal changes in the vertical distribution of rotifers in a eutrophic shallow lake with contrasting states of clear and turbid water. Zoological Studies 50, 454–465.

Diovisalvi, N., Echeverry, G. E. S., Lagomarsino, L., and Zagarese, H. E. (2015). Seasonal patterns and responses to an extreme climate event of rotifers community in a shallow eutrophic Pampean lake. Hydrobiologia 752, 125–137.
Seasonal patterns and responses to an extreme climate event of rotifers community in a shallow eutrophic Pampean lake.Crossref | GoogleScholarGoogle Scholar |

Dumont, H. J., and Sarma, S. S. S. (1995). Demography and population growth of Asplanchna girodi (Rotifera) as a function of prey (Anuraeopsis fissa) density. Hydrobiologia 306, 97–107.
Demography and population growth of Asplanchna girodi (Rotifera) as a function of prey (Anuraeopsis fissa) density.Crossref | GoogleScholarGoogle Scholar |

Dumont, H. J., Sarma, S. S. S., and Jawahar Ali, A. (1995). Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density. Freshwater Biology 33, 39–46.
Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density.Crossref | GoogleScholarGoogle Scholar |

Edmondson, W. T. (1960). Reproductive rates of rotifers in natural populations. Memorie dell’Istituto Italiano di Idrobiologia 12, 21–77.

Edmondson, W. T. (1965). Reproductive rate of planktonic rotifers as related to food and temperature. Ecological Monographs 35, 61–111.
Reproductive rate of planktonic rotifers as related to food and temperature.Crossref | GoogleScholarGoogle Scholar |

Fernández-Araiza, M. A., Sarma, S. S. S., and Nandini, S. (2005). Combined effects of food concentration and temperature on competition among four species of Brachionus (Rotifera). Hydrobiologia 546, 519–534.
Combined effects of food concentration and temperature on competition among four species of Brachionus (Rotifera).Crossref | GoogleScholarGoogle Scholar |

Ferrando, N. S. (2015). Zooplancton de ambientes acuáticos de la cuenca del río Salado (Buenos Aires): estudio de las relaciones interespecíficas y principales factores de control mediante experiencias de laboratorio y microcosmos. Ph.D. Thesis, Facultad de Ciencias Naturales y Museo. (Universidad Nacional de La Plata, La Plata, Argentina.) Available at http://hdl.handle.net/10915/45109 [Verified 15 August 2019].

Ferrando, N. S., Claps, M. C., Benítez, H. H., and Gabellone, N. A. (2018). Influence of temperature and conductivity on the life-history characteristics of a pampean strain of Brachionus plicatilis. Anais da Academia Brasileira de Ciências 90, 1431–1444.
Influence of temperature and conductivity on the life-history characteristics of a pampean strain of Brachionus plicatilis.Crossref | GoogleScholarGoogle Scholar | 29768573PubMed |

Fontaneto, D., De Smet, W., and Ricci, C. (2006). Rotifers in saltwater environments, re-evaluation of an inconspicuous taxon. Journal of the Marine Biological Association of the United Kingdom 86, 623–656.
Rotifers in saltwater environments, re-evaluation of an inconspicuous taxon.Crossref | GoogleScholarGoogle Scholar |

Gabaldón, C., Carmona, M. J., Montero-Pau, J., and Serra, M. (2015a). Long-term competitive dynamics of two cryptic rotifer species: diapause and fluctuating conditions. PLoS One 10, e0124406.
Long-term competitive dynamics of two cryptic rotifer species: diapause and fluctuating conditions.Crossref | GoogleScholarGoogle Scholar | 25881307PubMed |

Gabaldón, C., Montero-Pau, J., Carmona, M. J., and Serra, M. (2015b). Life-history variation, environmental fluctuations and competition in ecologically similar species: modeling the case of rotifers. Journal of Plankton Research 37, 953–965.
Life-history variation, environmental fluctuations and competition in ecologically similar species: modeling the case of rotifers.Crossref | GoogleScholarGoogle Scholar |

Gabellone, N., Claps, M., Solari, L., and Neschuk, N. (2005). Nutrients, conductivity and plankton in a landscape approach to a pampean lowland river (Salado River, Argentina). Biogeochemistry 75, 455–477.
Nutrients, conductivity and plankton in a landscape approach to a pampean lowland river (Salado River, Argentina).Crossref | GoogleScholarGoogle Scholar |

Gabellone, N., Solari, L., Claps, M., and Neschuk, N. (2008). Chemical classification of the water in a lowland river basin (Salado River, Buenos Aires, Argentina) affected by hydraulic modifications. Environmental Geology 53, 1353–1363.
Chemical classification of the water in a lowland river basin (Salado River, Buenos Aires, Argentina) affected by hydraulic modifications.Crossref | GoogleScholarGoogle Scholar |

Gabellone, N. A., Claps, M. C., Solari, L. C., Neschuk, N. C., and Ardohain, D. M. (2013). Spatial and temporal distribution pattern of phosphorus fractions in a saline lowland river with agricultural land use (Salado River, Buenos Aires Argentina). Fundamental and Applied Limnology 183, 271–286.
Spatial and temporal distribution pattern of phosphorus fractions in a saline lowland river with agricultural land use (Salado River, Buenos Aires Argentina).Crossref | GoogleScholarGoogle Scholar |

Gabellone, N. A., Claps, M. C., Dippolito, A., Ardohain, D. M., Bazzuri, M. E., and Solari, L. C. (2014). Trophic and structural relationship between zoo- and phytoplankton in a saline lowland river (Argentina): a short-time-scale analysis. Fundamental and Applied Limnology 184, 307–327.
Trophic and structural relationship between zoo- and phytoplankton in a saline lowland river (Argentina): a short-time-scale analysis.Crossref | GoogleScholarGoogle Scholar |

García-Chicote, J., Rojo, C., and Rodrigo, M. (2007). Alimentación de Acanthocyclops robustus. Un caso de canibalismo. Limnetica 26, 265–276.

Gliwicz, Z. M. (2002). On the different nature of top-down and bottom-up effects in pelagic food webs. Freshwater Biology 47, 2296–2312.
On the different nature of top-down and bottom-up effects in pelagic food webs.Crossref | GoogleScholarGoogle Scholar |

Guo, R., Snell, T. W., and Yang, J. (2011). Ecological strategy of rotifer (Brachionus calyciflorus) exposed to predator-and competitor-conditioned media. Hydrobiologia 658, 163–171.
Ecological strategy of rotifer (Brachionus calyciflorus) exposed to predator-and competitor-conditioned media.Crossref | GoogleScholarGoogle Scholar |

Halbach, U., and Halbach-Keup, G. (1974). Quantitative Beziehungen zwischen Phytoplankton und der Populations dynamik des Rotators Brachionus calyciflorus Pallas. Befunde aus Laboratoriumsexperimenten und Freilanduntersuchungen. Archiv für Hydrobiologie 73, 273–309.
Quantitative Beziehungen zwischen Phytoplankton und der Populations dynamik des Rotators Brachionus calyciflorus Pallas. Befunde aus Laboratoriumsexperimenten und Freilanduntersuchungen.Crossref | GoogleScholarGoogle Scholar |

Hirayama, K., Maruyama, I., and Maeda, T. (1989). Nutritional effect of freshwater Chlorella on growth of the rotifer Brachionus plicatilis. Hydrobiologia 186–187, 39–42.
Nutritional effect of freshwater Chlorella on growth of the rotifer Brachionus plicatilis.Crossref | GoogleScholarGoogle Scholar |

Kaya, M., Fontaneto, D., Segers, H., and Altindağ, A. (2010). Temperature and salinity as interacting drivers of species richness of planktonic rotifers in Turkish continental waters. Journal of Limnology 69, 297–304.
Temperature and salinity as interacting drivers of species richness of planktonic rotifers in Turkish continental waters.Crossref | GoogleScholarGoogle Scholar |

Kostopoulou, V., and Vadstein, O. (2007). Growth performance of the rotifers Brachionus plicatilis, B. ‘Nevada’ and B. ‘Cayman’ under different food concentrations. Aquaculture 273, 449–458.
Growth performance of the rotifers Brachionus plicatilis, B. ‘Nevada’ and B. ‘Cayman’ under different food concentrations.Crossref | GoogleScholarGoogle Scholar |

Krebs, C. J. (1985). ‘Ecology. The Experimental Analysis of Distribution and Abundance’, 3rd edn. (Harper and Row: New York, NY, USA.)

Kumar, R. (2003). Effect of Mesocyclops thermocyclopoides (Copepoda, Cyclopoida) predation on population dynamics of different prey: a laboratory study. Journal of Freshwater Ecology 18, 383–393.
Effect of Mesocyclops thermocyclopoides (Copepoda, Cyclopoida) predation on population dynamics of different prey: a laboratory study.Crossref | GoogleScholarGoogle Scholar |

Kumar, R., and Rao, T. R. (2001). Effect of the cyclopoid copepod Mesocyclops thermocyclopoides on the interactions between the predatory rotifer Asplanchna intermedia and its prey Brachionus calyciflorus and B. angularis. Hydrobiologia 453/454, 261–268.
Effect of the cyclopoid copepod Mesocyclops thermocyclopoides on the interactions between the predatory rotifer Asplanchna intermedia and its prey Brachionus calyciflorus and B. angularis.Crossref | GoogleScholarGoogle Scholar |

Lowe, C. D., Kemp, S. J., Bates, A. D., and Montagnes, D. J. S. (2005). Evidence that the rotifer Brachionus plicatilis is not an osmoconformer. Marine Biology 146, 923–929.
Evidence that the rotifer Brachionus plicatilis is not an osmoconformer.Crossref | GoogleScholarGoogle Scholar |

Lubzens, E., Tandler, A., and Mintoff, G. (1989). Rotifers as food in aquaculture. Hydrobiologia 186–187, 387–400.
Rotifers as food in aquaculture.Crossref | GoogleScholarGoogle Scholar |

Luna-Andrade, A., Aguilar-Duran, R., Nandini, S., and Sarma, S. S. S. (2002). Combined effects of copper and microalgal (Tetraselmis suecica) concentrations on the population growth of Brachionus plicatilis Müller (Rotifera). Water, Air, and Soil Pollution 141, 143–153.
Combined effects of copper and microalgal (Tetraselmis suecica) concentrations on the population growth of Brachionus plicatilis Müller (Rotifera).Crossref | GoogleScholarGoogle Scholar |

Malekzadeh Viayeh, R., Mohammadi, H., and Shafiei, A. B. (2010). Population growth of six Iranian Brachionus rotifer strains in response to salinity and food type. International Review of Hydrobiology 95, 461–470.
Population growth of six Iranian Brachionus rotifer strains in response to salinity and food type.Crossref | GoogleScholarGoogle Scholar |

Maruyama, I., Nakao, T., Shigeno, I., Ando, Y., and Hirayama, K. (1997). Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. Hydrobiologia 358, 133–138.
Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus.Crossref | GoogleScholarGoogle Scholar |

McCauley, E. (1984). The estimation of the abundance and biomass of zooplankton in samples. In ‘A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters’. (Eds J. Downing and F. Rigler.) pp. 228–265. (Blackwell Scientific Publications: New York, NY, USA.)

Miretzky, P., Conzonno, V., and Fernández Cirelli, A. (2000). Hydrochemistry of pampasic ponds in the lower stream bed of Salado River drainage basin, Argentina. Environmental Geology 39, 951–956.
Hydrochemistry of pampasic ponds in the lower stream bed of Salado River drainage basin, Argentina.Crossref | GoogleScholarGoogle Scholar |

Modenutti, B. E. (1998). Planktonic rotifers of Samborombon River Basin (Argentina). Hydrobiologia 387, 259–265.
Planktonic rotifers of Samborombon River Basin (Argentina).Crossref | GoogleScholarGoogle Scholar |

Nandini, S., and Sarma, S. (2003). Population growth of some genera of cladocerans (Cladocera) in relation to algal food (Chlorella vulgaris) levels. Hydrobiologia 491, 211–219.
Population growth of some genera of cladocerans (Cladocera) in relation to algal food (Chlorella vulgaris) levels.Crossref | GoogleScholarGoogle Scholar |

Rodrigues Capítulo, A., Gómez, N., Giorgi, A., and Feijoó, C. (2010). Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning. Hydrobiologia 657, 53–70.
Global changes in pampean lowland streams (Argentina): implications for biodiversity and functioning.Crossref | GoogleScholarGoogle Scholar |

Rothhaupt, K. O. (1995). Algal nutrient limitation affects rotifer growth rate but not ingestion rate. Limnology and Oceanography 40, 1201–1208.
Algal nutrient limitation affects rotifer growth rate but not ingestion rate.Crossref | GoogleScholarGoogle Scholar |

Sarma, S. S. S., Nandini, I., and Dumont, H. J. (1996). Competitive interactions between herbivorous rotifers: importance of food concentration and initial population density. Hydrobiologia 331, 1–7.
Competitive interactions between herbivorous rotifers: importance of food concentration and initial population density.Crossref | GoogleScholarGoogle Scholar |

Sarma, S. S. S., Fernández Araiza, M. A., and Nandini, S. (1999). Competition between Brachionus calyciflorus Pallas and Brachionus patulus (Müller) (Rotifera) in relation to algal food concentration and initial population density. Aquatic Ecology 33, 339–345.
Competition between Brachionus calyciflorus Pallas and Brachionus patulus (Müller) (Rotifera) in relation to algal food concentration and initial population density.Crossref | GoogleScholarGoogle Scholar |

Sarma, S. S. S., Larios Jurado, P. S., and Nandini, S. (2001). Effect of three food types on the population growth of Brachionus calyciflorus and Brachionus patulus (Rotifera: Brachionidae). Revista de Biología Tropical 49, 77–84.

Sarma, S. S. S., Elguea-Sánchez, B., and Nandini, S. (2002). Effect of salinity on competition between the rotifers Brachionus rotundiformis Tschugunoff and Hexarthra jenkinae (De Beauchamp) (Rotifera). Hydrobiologia 474, 183–188.
Effect of salinity on competition between the rotifers Brachionus rotundiformis Tschugunoff and Hexarthra jenkinae (De Beauchamp) (Rotifera).Crossref | GoogleScholarGoogle Scholar |

Sarma, S. S. S., Gulati, R. D., and Nandini, S. (2005). Factors affecting egg-ratio in planktonic rotifers. In ‘Developments in Hydrobiology 181: Rotifera X’. (Eds A. Herzig, R. D. Gulati, C. D. Jersabek, and L. May.) pp 361–373. (Springer: Dordrecht, Netherlands.)10.1007/1-4020-4408-9_37

Sarma, S. S. S., Nandini, S., Morales-Ventura, J., Delgado-Martínez, I., and González-Valverde, L. (2006). Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans). Aquatic Ecology 40, 349–360.
Effects of NaCl salinity on the population dynamics of freshwater zooplankton (rotifers and cladocerans).Crossref | GoogleScholarGoogle Scholar |

Sarma, S. S. S., Resendiz, R. A. L., and Nandini, S. (2011). Morphometric and demographic responses of brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae). Hydrobiologia 662, 179–187.
Morphometric and demographic responses of brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae).Crossref | GoogleScholarGoogle Scholar |

Snell, T. W., Childress, M. J., Boyer, E. M., and Hoff, F. H. (1987). Assessing the status of rotifer mass culture. Journal of the World Aquaculture Society 18, 270–277.
Assessing the status of rotifer mass culture.Crossref | GoogleScholarGoogle Scholar |

Sokal, R. R., and Rohlf, F. J. (1995). ‘Biometry: The Principles and Practice of Statistics in Biological Research’, 3rd edn. (Freeman: New York, NY, USA.)

Sommer, U., Sommer, F., Santer, B., Jamieson, C., Boersma, M., Becker, C., and Hansen, T. (2001). Complementary impact of copepods and cladocerans on phytoplankton. Ecology Letters 4, 545–550.
Complementary impact of copepods and cladocerans on phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Sulehria, A. Q. K., Abrar, J., Shah, A. H., and Malik, M. A. (2015). Effect of algae and other food types on population growth of rotifers. Biologia 61, 263–270.

Walsh, E. J., Schröder, T., Wallace, R. L., Ríos-Arana, J. V., and Rico-Martínez, R. (2008). Rotifers from selected inland saline waters in the Chihuahuan Desert of México. Saline Systems 4, 7.
Rotifers from selected inland saline waters in the Chihuahuan Desert of México.Crossref | GoogleScholarGoogle Scholar | 18533042PubMed |

Wang, X. L., Xiang, X. L., Xia, M. N., Han, Y., Huang, L., and Xi, Y. L. (2014). Differences in life history characteristics between two sibling species in Brachionus calyciflorus complex from tropical shallow lakes. International Journal of Limnology 50, 289–298.
Differences in life history characteristics between two sibling species in Brachionus calyciflorus complex from tropical shallow lakes.Crossref | GoogleScholarGoogle Scholar |

Weber, C. I. (1993). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 4th edn. EPA/600/4-90/027F. (US Environmental Protection Agency: Cincinnati, OH, USA.) Available at http://wbdg.org/FFC/EPA/EPACRIT/epa600_4_90_027f.pdf [Verified 15 August 2019].

Xi, Y. L., Huang, X. F., and Jin, H. J. (2001a). Life history characteristics of three types of females in Brachionus calyciflorus Pallas (Rotifera) fed different algae. Hydrobiologia 446/447, 95–98.
Life history characteristics of three types of females in Brachionus calyciflorus Pallas (Rotifera) fed different algae.Crossref | GoogleScholarGoogle Scholar |

Xi, Y. L., Huang, X. F., Jin, H. J., and Liu, J. K. (2001b). The effect of food concentration on the life history of three types of Brachionus calyciflorus females. International Review of Hydrobiology 86, 211–217.
The effect of food concentration on the life history of three types of Brachionus calyciflorus females.Crossref | GoogleScholarGoogle Scholar |

Xi, Y. L., Liu, J. K., and Jin, H. J. (2002). Population growth, body size, and egg size of two different strains of Brachionus calyciflorus Pallas (Rotifera) fed different algae. Journal of Freshwater Ecology 17, 185–190.
Population growth, body size, and egg size of two different strains of Brachionus calyciflorus Pallas (Rotifera) fed different algae.Crossref | GoogleScholarGoogle Scholar |

Yin, X. W., and Zhao, W. (2008). Studies on life history characteristics of Brachionus plicatilis O. F. Muller (Rotifera) in relation to temperature, salinity and food algae. Aquatic Ecology 42, 165–176.
Studies on life history characteristics of Brachionus plicatilis O. F. Muller (Rotifera) in relation to temperature, salinity and food algae.Crossref | GoogleScholarGoogle Scholar |

Yoshida, T. (2005). Toward the understanding of complex population dynamics: planktonic community as a model system. Ecological Research 20, 511–518.
Toward the understanding of complex population dynamics: planktonic community as a model system.Crossref | GoogleScholarGoogle Scholar |