Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Carbon chemistry variability around a tropical archipelago

Brenno J. Silva A C , Felipe L. Gaspar A , Pedro Tyaquiçã A , Nathalie Lefèvre B and Manuel J. Flores Montes A
+ Author Affiliations
- Author Affiliations

A Department of Oceanography, Federal University of Pernambuco, Arquitetura Avenue, 50740-550, Cidade Universitária, Recife, PE, Brazil.

B Université Pierre et Marie Curie, Institut de recherche pour le développement, Jussieu Street, F-75252 Paris, Cedex 05, France.

C Corresponding author. Email: brenno.januario@gmail.com

Marine and Freshwater Research 70(6) 767-780 https://doi.org/10.1071/MF18011
Submitted: 12 January 2018  Accepted: 18 November 2018   Published: 25 January 2019

Abstract

Oceanic islands affect the surrounding oceanic circulation by producing upwelling or vortices, resulting in the rising of a richer and colder subsurface water mass. This process increases primary production and can change some biogeochemical processes, such as carbon chemistry and the biological pump. The aim of this study was to describe the vertical variability of carbon chemistry around Fernando de Noronha Archipelago (FNA) and to verify how the island mass effect (IME) can affect carbon distribution. Two transects on opposite sides of the FNA were established according to the direction of the central South Equatorial Current, and samples were collected in July 2010, September 2012 and July 2014 from the surface down to a depth of 500 m. The results showed strong stratification, with an uplift of the thermohaline structure, which resulted in an increase of chlorophyll-a concentration downstream of the island during the 2010 and 2014 cruises. Carbon chemistry parameters were strongly correlated with temperature, salinity and dissolved oxygen along the water column and did not change between sides of the island in the periods studied. We conclude that the IME did not significantly affect carbon chemistry, which was more correlated with thermohaline gradient.

Additional keywords: carbonate system, island mass effect, pycnocline, wake.


References

Almeida, F. F. M. (2007). Ilhas oceânicas brasileiras e suas relações com a tectônica atlântica. Terrae Didatica 2, 3–18.
Ilhas oceânicas brasileiras e suas relações com a tectônica atlântica.Crossref | GoogleScholarGoogle Scholar |

Amaral, F. D., Hudson, M. M., Steiner, A. Q., and Ramos, C. A. C. (2007). Corals and calcified hydroids of the Manuel Luiz Marine State Park (State of Maranhão, Northeast Brazil). Biota Neotropica 7, 73–81.
Corals and calcified hydroids of the Manuel Luiz Marine State Park (State of Maranhão, Northeast Brazil).Crossref | GoogleScholarGoogle Scholar |

Andrade, I., Sangrà, P., Hormazabal, S., and Correa-Ramirez, M. (2014). Island mass effect in the Juan Fernández Archipelago (33°S), southeastern Pacific. Deep-sea Research – I. Oceanographic Research Papers 84, 86–99.
Island mass effect in the Juan Fernández Archipelago (33°S), southeastern Pacific.Crossref | GoogleScholarGoogle Scholar |

Assunção, R. V., Silva, A. C., Martins, J., and Flores Montes, M. (2016). Spatial–temporal variability of the thermohaline properties in the coastal region of Fernando de Noronha Archipelago, Brazil. Journal of Coastal Research 75, 512–516.
Spatial–temporal variability of the thermohaline properties in the coastal region of Fernando de Noronha Archipelago, Brazil.Crossref | GoogleScholarGoogle Scholar |

Barcellos, R. L., Lins, S. R., Coelho, C., and Travassos, P. E. (2017). Processos sedimentares sazonais e análise da fração arenosa no sistema ambiental do sueste, Fernando de Noronha, estado de Pernambuco. Arquivos de Ciências do Mar 50, 42–71.
Processos sedimentares sazonais e análise da fração arenosa no sistema ambiental do sueste, Fernando de Noronha, estado de Pernambuco.Crossref | GoogleScholarGoogle Scholar |

Bates, N. R., Best, M. H. P., Neely, K., Garley, R., Dickson, A. G., and Johnson, R. J. (2012). Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences 9, 2509–2522.
Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santana-Casiano, J. M. (2014). A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography (Washington, D.C.) 27, 126–141.
A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Bonou, F. K., Noriega, C., Lefèvre, N., and Araujo, M. (2016). Distribution of CO2 parameters in the Western Tropical Atlantic Ocean. Dynamics of Atmospheres and Oceans 73, 47–60.
Distribution of CO2 parameters in the Western Tropical Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Caldeira, R. M. A., and Marchesiello, P. (2002). Ocean response to wind sheltering in the Southern California Bight. Geophysical Research Letters 29, 1635.
Ocean response to wind sheltering in the Southern California Bight.Crossref | GoogleScholarGoogle Scholar |

Caldeira, R. M. A., Groom, S., Miller, P., Pilgrim, D., and Nezlin, N. P. (2002). Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sensing of Environment 80, 336–360.
Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic.Crossref | GoogleScholarGoogle Scholar |

Caldeira, R. M., Marchesiello, P., Nezlin, N. P., DiGiacomo, P. M., and McWilliams, J. C. (2005). Island wakes in the southern California Bight. Journal of Geophysical Research – D. Oceans 110, C11012.
Island wakes in the southern California Bight.Crossref | GoogleScholarGoogle Scholar |

Carter, B. R., Williams, N. L., Gray, A. R., and Feely, R. A. (2016). Locally interpolated alkalinity regression for global alkalinity estimation. Limnology and Oceanography, Methods 14, 268–277.
Locally interpolated alkalinity regression for global alkalinity estimation.Crossref | GoogleScholarGoogle Scholar |

Chang, M. H., Tang, T. Y., Ho, C. R., and Chao, S. Y. (2013). Kuroshio‐induced wake in the lee of Green Island off Taiwan. Journal of Geophysical Research – D. Oceans 118, 1508–1519.
Kuroshio‐induced wake in the lee of Green Island off Taiwan.Crossref | GoogleScholarGoogle Scholar |

Chou, W. C., Sheu, D. D., Lee, B. S., Tseng, C. M., Chen, C. T. A., Wang, S. L., and Wong, G. T. F. (2007). Depth distributions of alkalinity, TCO2 and δ13CTCO2 at SEATS time-series site in the northern South China Sea. Deep-sea Research – II. Topical Studies in Oceanography 54, 1469–1485.
Depth distributions of alkalinity, TCO2 and δ13CTCO2 at SEATS time-series site in the northern South China Sea.Crossref | GoogleScholarGoogle Scholar |

Cordeiro, T. A., Brandini, F. P., Rosa, R. S., and Sassi, R. (2013). Deep chlorophyll maximum in Western Equatorial Atlantic – how does it interact with islands slopes and seamounts? Marketing Science 3, 30–37.

Coutis, P. F., and Middleton, J. H. (2002). The physical and biological impact of a small island wake in the deep ocean. Deep-sea Research – I. Oceanographic Research Papers 49, 1341–1361.
The physical and biological impact of a small island wake in the deep ocean.Crossref | GoogleScholarGoogle Scholar |

De Queiroz, A. R., Montes, M. F., de Castro Melo, P. A. M., da Silva, R. A., and Koening, M. L. (2015). Vertical and horizontal distribution of phytoplankton around an oceanic archipelago of the Equatorial Atlantic. Marine Biodiversity Records 8, e155.
Vertical and horizontal distribution of phytoplankton around an oceanic archipelago of the Equatorial Atlantic.Crossref | GoogleScholarGoogle Scholar |

Dickson, A. G., and Goyet, C. (Eds) (1994). Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Technical report ORNL/CDIAC-74. (US Department of Environment, Oak Ridge National Laboratory: Oak Ridge, TN, USA.) Available at https://www.osti.gov/servlets/purl/10107773-BfTXAM/webviewable/ [Verified 21 January 2019].

Dickson, A. G., and Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research – A. Oceanographic Research Papers 34, 1733–1743.
A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media.Crossref | GoogleScholarGoogle Scholar |

Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds) (2007). Guide to best practices for ocean CO2 measurements. Special Publication 3, IOCCP Report 8. (North Pacific Marine Science Organization (PICES): Sidney, BC, Canada.) Available at https://cdiac.ess-dive.lbl.gov/ftp/oceans/Handbook_2007/Guide_all_in_one.pdf [Verified 21 January 2019].

Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1, 169–192.
Ocean acidification: the other CO2 problem.Crossref | GoogleScholarGoogle Scholar | 21141034PubMed |

Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M. (2009). Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences of the United States of America 106, 12235–12240.
Physical and biogeochemical modulation of ocean acidification in the central North Pacific.Crossref | GoogleScholarGoogle Scholar | 19666624PubMed |

Doty, M. S., and Oguri, M. (1956). The island mass effect. ICES Journal of Marine Science 22, 33–37.
The island mass effect.Crossref | GoogleScholarGoogle Scholar |

Edmond, J. M. (1970). High precision determination of titration alkalinity and total carbon dioxide content of seawater by potentiometric titration. Deep-Sea Research 17, 737–750.

Egleston, E. S., Sabine, C. L., and Morel, F. M. (2010). Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Global Biogeochemical Cycles 24, GB1002.
Revelle revisited: buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity.Crossref | GoogleScholarGoogle Scholar |

Ekau, W., and Knoppers, B. (1999). An introduction to the pelagic system of the northeast and east Brazilian shelf. Archiv für Fischerei- und Meeresforschung 47, 113–132.

Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366.
Impact of anthropogenic CO2 on the CaCO3 system in the oceans.Crossref | GoogleScholarGoogle Scholar | 15256664PubMed |

Feely, R. A., Doney, S. C., and Cooley, S. R. (2009). Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47.
Ocean acidification: present conditions and future changes in a high-CO2 world.Crossref | GoogleScholarGoogle Scholar |

Ferreira, B. P., Costa, M. B. S. F., Coxey, M. S., Gaspar, A. L. B., Veleda, D., and Araujo, M. (2013). The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs 32, 441–454.
The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic.Crossref | GoogleScholarGoogle Scholar |

Gattuso, J. P., Frankignoulle, M., Bourge, I., Romaine, S., and Buddemeier, R. W. (1998). Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change 18, 37–46.
Effect of calcium carbonate saturation of seawater on coral calcification.Crossref | GoogleScholarGoogle Scholar |

Giannini, A., Chiang, J. C., Cane, M. A., Kushnir, Y., and Seager, R. (2001). The ENSO teleconnection to the tropical Atlantic Ocean: contributions of the remote and local SSTs to rainfall variability in the tropical Americas. Journal of Climate 14, 4530–4544.
The ENSO teleconnection to the tropical Atlantic Ocean: contributions of the remote and local SSTs to rainfall variability in the tropical Americas.Crossref | GoogleScholarGoogle Scholar |

González-Dávila, M., Santana‐Casiano, J. M., Rueda, M. J., Llinás, O., and González-Dávila, E. F. (2003). Seasonal and interannual variability of sea‐surface carbon dioxide species at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000. Global Biogeochemical Cycles 17, 1076.
Seasonal and interannual variability of sea‐surface carbon dioxide species at the European Station for Time Series in the Ocean at the Canary Islands (ESTOC) between 1996 and 2000.Crossref | GoogleScholarGoogle Scholar |

González-Dávila, M., Santana-Casiano, J. M., de Armas, D., Escánez, J., and Suarez-Tangil, M. (2006). The influence of island generated eddies on the carbon dioxide system, south of the Canary Islands. Marine Chemistry 99, 177–190.
The influence of island generated eddies on the carbon dioxide system, south of the Canary Islands.Crossref | GoogleScholarGoogle Scholar |

González-Dávila, M., Santana-Casiano, J. M., Rueda, M. J., and Llinás, O. (2010). The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004. Biogeosciences 7, 3067.
The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004.Crossref | GoogleScholarGoogle Scholar |

Gove, J. M., Merrifield, M. A., and Brainard, R. E. (2006). Temporal variability of current‐driven upwelling at Jarvis Island. Journal of Geophysical Research – D. Oceans 111, C12011.
Temporal variability of current‐driven upwelling at Jarvis Island.Crossref | GoogleScholarGoogle Scholar |

Gove, J. M., Williams, G. J., McManus, M. A., Heron, S. F., and Sandin, S. A. (2013). Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems. PLoS One 8, e61974.
Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems.Crossref | GoogleScholarGoogle Scholar | 23637939PubMed |

Gove, J. M., McManus, M. A., Neuheimer, A. B., Polovina, J. J., Drazen, J. C., Smith, C. R., Merrifield, M. A., Friedlander, A. M., Ehses, J. S., Young, C. W., Dillon, A. K., and Williams, G. J. (2016). Near-island biological hotspots in barren ocean basins. Nature Communications 7, 10581.
Near-island biological hotspots in barren ocean basins.Crossref | GoogleScholarGoogle Scholar | 26881874PubMed |

Grasshoff, K., Kremling, K., and Ehrhard, M. (Eds) (1983). ‘Methods of Seawater Analysis.’ (Verlag Chemie: Wienheim, Germany.)

Gu, G., and Adler, R. F. (2006). Interannual rainfall variability in the tropical Atlantic region. Journal of Geophysical Research – D. Atmospheres 111, D02106.
Interannual rainfall variability in the tropical Atlantic region.Crossref | GoogleScholarGoogle Scholar |

Hasegawa, D., Yamazaki, H., Lueck, R. G., and Seuront, L. (2004). How islands stir and fertilize the upper ocean. Geophysical Research Letters 31, L16303.
How islands stir and fertilize the upper ocean.Crossref | GoogleScholarGoogle Scholar |

Ibánhez, J. S. P., Flores, M., and Lefèvre, N. (2017). Collapse of the tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010. Scientific Reports 7, 41694.
Collapse of the tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010.Crossref | GoogleScholarGoogle Scholar |

Jales, M. C., Feitosa, F. A. D. N., Koening, M. L., Montes, M. D. J. F., Araújo Filho, M. C. D., and Silva, R. A. D. (2015). Phytoplankton biomass dynamics and environmental variables around the Rocas Atoll Biological Reserve, South Atlantic. Brazilian Journal of Oceanography 63, 443–454.
Phytoplankton biomass dynamics and environmental variables around the Rocas Atoll Biological Reserve, South Atlantic.Crossref | GoogleScholarGoogle Scholar |

Jiang, M. S., and Chai, F. (2005). Physical and biological controls on the latitudinal asymmetry of surface nutrients and pCO2 in the central and eastern equatorial Pacific. Journal of Geophysical Research – D. Oceans 110, C06007.

Juranek, L. W., Feely, R. A., Gilbert, D., Freeland, H., and Miller, L. A. (2011). Real‐time estimation of pH and aragonite saturation state from Argo profiling floats: prospects for an autonomous carbon observing strategy. Geophysical Research Letters 38, L17603.
Real‐time estimation of pH and aragonite saturation state from Argo profiling floats: prospects for an autonomous carbon observing strategy.Crossref | GoogleScholarGoogle Scholar |

Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterstrom, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., and Suzuki, T. (2015). Global Ocean Data Analysis Project, Version 2 (GLODAPv2). ORNL/CDIAC-162/NDP-093. Available at https://epic.awi.de/39306/1/NDP_093_2015.pdf [Verified 21 December 2018].

Kitidis, V., Brown, I., Hardman-Mountford, N., and Lefèvre, N. (2016). Surface ocean carbon dioxide during the Atlantic Meridional Transect (1995–2013); evidence of ocean acidification. Progress in Oceanography 18, 14721.

Lee, K., Wanninkhof, R., Feely, R. A., Millero, F. J., and Peng, T. H. (2000). Global relationships of total inorganic carbon with temperature and nitrate in surface seawater. Global Biogeochemical Cycles 14, 979–994.
Global relationships of total inorganic carbon with temperature and nitrate in surface seawater.Crossref | GoogleScholarGoogle Scholar |

Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G.-H., Wanninkhof, R., Feely, R. A., and Key, R. M. (2006). Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters 33, L19605.
Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans.Crossref | GoogleScholarGoogle Scholar |

Lefèvre, N., Guillot, A., Beaumont, L., and Danguy, T. (2008). Variability of fCO2 in the Eastern Tropical Atlantic from a moored buoy. Journal of Geophysical Research – D. Oceans 113, C01015.

Lefèvre, N., Diverrès, D., and Gallois, F. (2010). Origin of CO2 undersaturation in the western tropical Atlantic. Tellus – B. Chemical and Physical Meteorology 62, 595–607.
Origin of CO2 undersaturation in the western tropical Atlantic.Crossref | GoogleScholarGoogle Scholar |

Lefèvre, N., Caniaux, G., Janicot, S., and Gueye, A. K. (2013). Increased CO2 outgassing in February–May 2010 in the tropical Atlantic following the 2009 Pacific El Niño. Journal of Geophysical Research – D. Oceans 118, 1645–1657.

Lefèvre, N., Flores Montes, M., Gaspar, F. L., Rocha, C., Jiang, S., De Araújo, M. C., and Ibánhez, J. (2017). Net heterotrophy in the Amazon Continental Shelf changes rapidly to a sink of CO2 in the Outer Amazon Plume. Frontiers in Marine Science 4, 278.
Net heterotrophy in the Amazon Continental Shelf changes rapidly to a sink of CO2 in the Outer Amazon Plume.Crossref | GoogleScholarGoogle Scholar |

Lima, A. R., Barletta, M., and Costa, M. F. (2016). Seasonal-dial shifts of ichthyoplankton assemblages and plastic debris around an Equatorial Atlantic archipelago. Frontiers in Environmental Science 4, 56.
Seasonal-dial shifts of ichthyoplankton assemblages and plastic debris around an Equatorial Atlantic archipelago.Crossref | GoogleScholarGoogle Scholar |

Lira, S. M. D. A., Teixeira, I. D. Á., Lima, C. D. M. D., Santos, G. D. S., Leitão, S. N., and Schwamborn, R. (2014). Spatial and nycthemeral distribution of the zooneuston off Fernando de Noronha, Brazil. Brazilian Journal of Oceanography 62, 35–45.
Spatial and nycthemeral distribution of the zooneuston off Fernando de Noronha, Brazil.Crossref | GoogleScholarGoogle Scholar |

Lumpkin, R., and Garzoli, S. L. (2005). Near-surface circulation in the tropical Atlantic Ocean. Deep-sea Research – I. Oceanographic Research Papers 52, 495–518.
Near-surface circulation in the tropical Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Marques, F. A., Rosas Ribeiro, M., Bretas Bittar, S. M., Novais Tavares Filho, A., and Wanderley Fernandes Lima, J. F. (2007). Caracterização e classificação de Neossolos da ilha de Fernando de Noronha (PE). Revista Brasileira de Ciência do Solo 31, 1553.
Caracterização e classificação de Neossolos da ilha de Fernando de Noronha (PE).Crossref | GoogleScholarGoogle Scholar |

Medeiros, C., Macedo, S. J., Feitosa, F. A. N., and Koening, M. L. (1999). Hydrography and phytoplankton biomass and abundance of north-east Brazilian Waters. Archiv für Fischerei- und Meeresforschung 47, 133–151.

Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicz, R. M. (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography 18, 897–907.
Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure.Crossref | GoogleScholarGoogle Scholar |

Millero, F. J., Lee, K., and Roche, M. (1998). Distribution of alkalinity in the surface waters of the major oceans. Marine Chemistry 60, 111–130.
Distribution of alkalinity in the surface waters of the major oceans.Crossref | GoogleScholarGoogle Scholar |

Mucci, A. (1983). The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. American Journal of Science 283, 780–799.
The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure.Crossref | GoogleScholarGoogle Scholar |

Neumann-Leitão, S., Gusmão, L. M., Silva, T., Nascimento-Vieira, D. A., and Silva, A. P. (1999). Mesozooplankton biomass and diversity in coastal and oceanic waters off North-Eastern Brazil. Archiv für Fischerei- und Meeresforschung 47, 153–165.

Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterstrom, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T. (2016). The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean. Earth System Science Data 8, 297–323.
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean.Crossref | GoogleScholarGoogle Scholar |

Piontkovski, S. A., Landry, M. R., Finenko, Z. Z., Kovalev, A. V., Williams, R., Gallienne, C. P., Mishonov, A. V., Skryabin, V. A., Tokarey, Y. N., and Nikolsky, V. N. (2003). Plankton communities of the South Atlantic anticyclonic gyre. Oceanologica Acta 26, 255–268.
Plankton communities of the South Atlantic anticyclonic gyre.Crossref | GoogleScholarGoogle Scholar |

Reverdin, G., Rual, P., Penhoat, Y. D., and Gouriou, Y. (1991). Vertical structure of the seasonal cycle in the central equatorial Atlantic Ocean: XBT sections from 1980 to 1988. Journal of Physical Oceanography 21, 277–291.
Vertical structure of the seasonal cycle in the central equatorial Atlantic Ocean: XBT sections from 1980 to 1988.Crossref | GoogleScholarGoogle Scholar |

Rivaro, P., Messa, R., Massolo, S., and Frache, R. (2010). Distributions of carbonate properties along the water column in the Mediterranean Sea: spatial and temporal variations. Marine Chemistry 121, 236–245.
Distributions of carbonate properties along the water column in the Mediterranean Sea: spatial and temporal variations.Crossref | GoogleScholarGoogle Scholar |

Rodrigues, R. R., Rothstein, L. M., and Wimbush, M. (2007). Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: a numerical study. Journal of Physical Oceanography 37, 16–30.
Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: a numerical study.Crossref | GoogleScholarGoogle Scholar |

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F. (2004). The oceanic sink for anthropogenic CO2. Science 305, 367–371.
The oceanic sink for anthropogenic CO2.Crossref | GoogleScholarGoogle Scholar | 15256665PubMed |

Sabine, C. L., Key, R. M., Kozyr, A., Feely, R. A., Wanninkhof, R., Millero, F. J., Peng, T-H., Bullister, J. L., and Lee, K. (2005). Global Ocean Data Analysis Project (GLODAP): results and data, ORNL/CDIAC-145/NDP-083. Available at https://www.pmel.noaa.gov/co2/files/ndp083.pdf [Verified 21 December 2018].

Sampaio, C. L., Nunes, J. D. A. C., and Mendes, L. F. (2004). Acyrtus pauciradiatus, a new species of clingfish (Teleostei: Gobiesocidae) from Fernando de Noronha Archipelago, Pernambuco state, Northeastern Brazil. Neotropical Ichthyology 2, 206–208.
Acyrtus pauciradiatus, a new species of clingfish (Teleostei: Gobiesocidae) from Fernando de Noronha Archipelago, Pernambuco state, Northeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Sampaio de Souza, C., da Luz, J. A. G., Macedo, S., Montes, M. D. J. F., and Mafalda, P. (2013). Chlorophyll a and nutrient distribution around seamounts and islands of the tropical south-western Atlantic. Marine and Freshwater Research 64, 168–184.
Chlorophyll a and nutrient distribution around seamounts and islands of the tropical south-western Atlantic.Crossref | GoogleScholarGoogle Scholar |

Schott, F. A., Dengler, M., Brandt, P., Affler, K., Fischer, J., Bourles, B., Gouriou, Y., Molinari, R. L., and Rhein, M. (2003). The zonal currents and transports at 35°W in the tropical Atlantic. Geophysical Research Letters 30, 1349.
The zonal currents and transports at 35°W in the tropical Atlantic.Crossref | GoogleScholarGoogle Scholar |

Silva, A. C. D., Araújo, M., and Bourlès, B. (2005). Variação sazonal da estrutura de massas de água na plataforma continental do Amazonas e área oceânica adjacente. Revista Brasileira de Geofísica 23, 145–157.
Variação sazonal da estrutura de massas de água na plataforma continental do Amazonas e área oceânica adjacente.Crossref | GoogleScholarGoogle Scholar |

Silverman, J., Lazar, B., and Erez, J. (2007). Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. Journal of Geophysical Research – D. Oceans 112, C05004.

Stramma, L., and England, M. (1999). On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research – D. Oceans 104, 20863–20883.
On the water masses and mean circulation of the South Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Stramma, L., and Schott, F. (1999). The mean flow field of the tropical Atlantic Ocean. Deep-sea Research – II. Topical Studies in Oceanography 46, 279–303.
The mean flow field of the tropical Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Stramma, L., Rhein, M., Brandt, P., Dengler, M., Böning, C., and Walter, M. (2005). Upper ocean circulation in the western tropical Atlantic in boreal fall 2000. Deep-sea Research – I. Oceanographic Research Papers 52, 221–240.
Upper ocean circulation in the western tropical Atlantic in boreal fall 2000.Crossref | GoogleScholarGoogle Scholar |

Strickland, J. D., and Parsons, T. R. (1972). A practical handbook of seawater analysis. Bulletin of Fisheries Research 167, 1–311.

Sutton, R. T., Jewson, S. P., and Rowell, D. P. (2000). The elements of climate variability in the tropical Atlantic region. Journal of Climate 13, 3261–3284.
The elements of climate variability in the tropical Atlantic region.Crossref | GoogleScholarGoogle Scholar |

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Scuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Kortzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., Baar, H. J. W., and Watson, A. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-sea Research – II. Topical Studies in Oceanography 56, 554–577.
Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans.Crossref | GoogleScholarGoogle Scholar |

Tchamabi, C. C., Araujo, M., Silva, M., and Bourlès, B. (2017). A study of the Brazilian Fernando de Noronha Island and Rocas Atoll wakes in the tropical Atlantic. Ocean Modelling 111, 9–18.
A study of the Brazilian Fernando de Noronha Island and Rocas Atoll wakes in the tropical Atlantic.Crossref | GoogleScholarGoogle Scholar |

Williams, N. L., Juranek, L. W., Johnson, K. S., Feely, R. A., Riser, S. C., Talley, L. D., Russel, J. L., Sarmiento, J. L., and Wanninkhof, R. (2016). Empirical algorithms to estimate water column pH in the Southern Ocean. Geophysical Research Letters 43, 3415–3422.
Empirical algorithms to estimate water column pH in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Xue, L., Cai, W. J., Sutton, A. J., and Sabine, C. (2017). Sea surface aragonite saturation state variations and control mechanisms at the Gray’s Reef time-series site off Georgia, USA (2006–2007). Marine Chemistry 195, 27–40.
Sea surface aragonite saturation state variations and control mechanisms at the Gray’s Reef time-series site off Georgia, USA (2006–2007).Crossref | GoogleScholarGoogle Scholar |

Zheng, Z. W., and Zheng, Q. (2014). Variability of island-induced ocean vortex trains, in the Kuroshio region southeast of Taiwan Island. Continental Shelf Research 81, 1–6.
Variability of island-induced ocean vortex trains, in the Kuroshio region southeast of Taiwan Island.Crossref | GoogleScholarGoogle Scholar |