Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Determination of the physical drivers of Zostera seagrass distribution using a spatial autoregressive lag model

A. J. Hirst A E , K. Giri B , D. Ball C and R. S. Lee D
+ Author Affiliations
- Author Affiliations

A Centre for Integrated Ecology, School of Life and Environmental Science, Deakin University, Vic. 3220, Australia.

B Department of Economic Development, Jobs, Transport and Resources, Vic. 3053, Australia.

C PO Box 457, Frankston, Vic. 3199, Australia.

D Marine Water Environmental Solutions, Environment Protection Authority, Macleod, Vic. 3086, Australia.

E Corresponding author. Email: a.hirst@deakin.edu.au

Marine and Freshwater Research 68(9) 1752-1763 https://doi.org/10.1071/MF16252
Submitted: 12 July 2016  Accepted: 15 December 2016   Published: 15 February 2017

Abstract

Seagrass mapping has become a key tool in understanding the causes of change in seagrass habitats. The present study demonstrates a method for examining relationships between seagrass habitat polygons and environmental data generated by hydrodynamic, wave, catchment and dispersion models. Seagrass abundance data are highly spatially autocorrelated and this effect was corrected using a spatially simultaneous autoregressive lag model (SSARLM). The physical processes that determine the spatial distribution of seagrass in Port Phillip Bay, Australia, were investigated by examining the links between seagrass distribution and abundance and broadscale hydrodynamic (waves, currents), physical (light, depth, salinity and temperature) and catchment (nutrient and suspended sediment concentrations) processes. The SSARLM indicated that the distribution of Zostera spp. meadows is principally constrained by two physical thresholds, namely, wave height or exposure and light. The former excludes seagrasses from colonising wave-exposed coastlines, whereas the latter directly determines the depth profile of seagrasses through its influence on light availability. In total, 95% of all seagrass occurred within grid cells with a mean significant wave height of <0.38 m and a mean percentage irradiance of >33% surface levels. By comparison, variation in water quality, represented by variables such as modelled total nitrogen, suspended solids or salinity, had little influence on seagrass distribution.

Additional keywords: hydrodynamic, wave and dispersion models, Port Phillip Bay, seagrass mapping, spdep package, wave and light thresholds.


References

Abal, E. G., and Dennison, W. C. (1996). Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia. Marine and Freshwater Research 47, 763–771.
Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvFSmtrk%3D&md5=eee1ae2edd9ce1d8d89d78b110a5274eCAS |

Adams, M. P., Saunders, M. I., Maxwell, P., Tuazon, D., Roelfsema, C. M., Callaghan, D. P., Leon, J., Grinham, A. R., and O’Brien, K. R. (2016). Prioritizing localised management actions for seagrass conservation and restoration using a species distribution model. Aquatic Conservation 26, 639–659.
Prioritizing localised management actions for seagrass conservation and restoration using a species distribution model.Crossref | GoogleScholarGoogle Scholar |

Anselin, L. (2001). Spatial econometrics. In ‘A Companion to Theoretical Econometrics’. (Ed. B. H. Baltagi.) pp. 310–330. (Blackwell Publishing: Malden, MA, USA.) https://doi.org/10.1002/9780470996249.CH15

Argent, R. (2006). PortsE2: a decision support system for water quality improvement in Port Phillip Bay and Western Port. CEAH report 01/06. Melbourne Water, Vic, Australia.

Balestri, E., Cinelli, F., and Lardicci, C. (2003). Spatial variation in Posidonia oceanica structural, morphological and dynamic features in a northwestern Mediterranean coastal area: a multi-scale analysis. Marine Ecology Progress Series 250, 51–60.
Spatial variation in Posidonia oceanica structural, morphological and dynamic features in a northwestern Mediterranean coastal area: a multi-scale analysis.Crossref | GoogleScholarGoogle Scholar |

Ball, D., Soto-Berelov, M., and Young, P. (2014). Historical seagrass mapping in Port Phillip Bay. Journal of Coastal Conservation 18, 257–272.
Historical seagrass mapping in Port Phillip Bay.Crossref | GoogleScholarGoogle Scholar |

Barbee, N., Longmore, A. R., Townsend, K., Pettigrove, V., and Swearer, S. E. (2016). Technical knowledge synthesis for nutrient cycling, marine pests and pollutants in Port Phillip Bay. Technical report number 60. University of Melbourne, Centre for Aquatic Pollution Identification and Management, Melbourne, Vic., Australia.

Beasley, A. W. (1966). Port Phillip Bay survey 1957–63: bottom sediments of Port Phillip Bay. Memoirs of the National Museum of Victoria 27, 69–105.

Bekkby, T., Rinde, E., Erikstad, L., Bakkestuen, V., Longva, O., Christensen, O., Isaeus, M., and Isachsen, P. E. (2008a). Spatial probability modelling of eelgrass (Zostera marina) distribution on the west coast of Norway. ICES Journal of Marine Science 65, 1093–1101.
Spatial probability modelling of eelgrass (Zostera marina) distribution on the west coast of Norway.Crossref | GoogleScholarGoogle Scholar |

Bekkby, T., Isachsen, P. E., Isaeus, M., and Bakkerstuen, V. (2008b). GIS modelling of wave exposure at the seabed: a depth-attenuated wave exposure model. Marine Geodesy 31, 117–127.
GIS modelling of wave exposure at the seabed: a depth-attenuated wave exposure model.Crossref | GoogleScholarGoogle Scholar |

Bivand, R. S., Hauke, J., and Kossowski, T. (2013). Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geographical Analysis 45, 150–179.
Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods.Crossref | GoogleScholarGoogle Scholar |

Black, K. (2003). Perspectives on evolution in sediment modeling. In ‘Advances in Coastal Modeling’. (Ed. V. C. Lakhan.) pp. 217–236. (Elsevier: Amsterdam, Netherlands.)

Black, K. P., Harrison, S., and Bosserelle, C. (2011). Port Phillip and Western Port receiving water quality modelling: nutrient dynamics and primary production. EPA publication number 1379. Environment Protection Authority Victoria, Melbourne, Vic., Australia. Available at http://www.epa.vic.gov.au/~/media/Publications/1379.pdf [Verified 7 February 2017].

Blake, S., and Ball, D. (2001). Seagrass mapping of Port Phillip Bay. Report number 39, Marine and Freshwater Resources Institute, Queenscliff, Vic., Australia. Available at http://www.depi.vic.gov.au/__data/assets/pdf_file/0019/226270/PPB_Seagrass_Report.pdf [Verified 7 February 2017].

Blake, S., Ball, D., and Coots, A. (2012). Marine video survey of Victoria. Fisheries Victoria technical report number 155, Department of Primary Industries, Queenscliff, Vic., Australia.

Bulthuis, D. (1983). Effects of in situ light reduction on density and growth of the seagrass Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western Port, Victoria, Australia. Journal of Experimental Marine Biology and Ecology 67, 91–103.
Effects of in situ light reduction on density and growth of the seagrass Heterozostera tasmanica (Martens ex Aschers.) den Hartog in Western Port, Victoria, Australia.Crossref | GoogleScholarGoogle Scholar |

Buzzelli, C. P., Wetzela, R. L., and Meyers, M. B. (1999). A linked physical and biological framework to assess biogeochemical dynamics in a shallow estuarine ecosystem. Estuarine, Coastal and Shelf Science 49, 829–851.
A linked physical and biological framework to assess biogeochemical dynamics in a shallow estuarine ecosystem.Crossref | GoogleScholarGoogle Scholar |

de Boer, W. F. (2007). Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurence: a review. Hydrobiologia 591, 5–24.
Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurence: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVaru78%3D&md5=593f4c3172df1080c6bdefc6816ab551CAS |

Devlin, M. J., Barry, J., Mills, D. K., Gowen, R. J., Foden, J., Sivyer, D., and Tett, P. (2008). Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuarine, Coastal and Shelf Science 79, 429–439.
Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters.Crossref | GoogleScholarGoogle Scholar |

Downie, A., von Numers, M., and Bostrom, C. (2013). Influence of model selection on the predicted distribution of the seagrass Zostera marina. Estuarine, Coastal and Shelf Science 121–122, 8–19.
Influence of model selection on the predicted distribution of the seagrass Zostera marina.Crossref | GoogleScholarGoogle Scholar |

Dumbauld, B. R., and McCoy, L. M. (2015). Effect of oyster aquaculture on seagrass Zostera marina at the estuarine landscape scale in Willapa Bay, Washington (USA). Aquaculture Environment Interactions 7, 29–47.
Effect of oyster aquaculture on seagrass Zostera marina at the estuarine landscape scale in Willapa Bay, Washington (USA).Crossref | GoogleScholarGoogle Scholar |

Ferrarin, C., and Umgiesser, G. (2005). Hydrodynamic modeling of a coastal lagoon: the Cabras lagoon in Sardinia, Italy. Ecological Modelling 188, 340–357.
Hydrodynamic modeling of a coastal lagoon: the Cabras lagoon in Sardinia, Italy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFehs7zE&md5=5cabe847530e3727bae3a4682dc3e4f7CAS |

Fonseca, M. S., and Bell, S. S. (1998). Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Marine Ecology Progress Series 171, 109–121.
Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA.Crossref | GoogleScholarGoogle Scholar |

Fonseca, M. S., and Kenworthy, W. J. (1987). Effects of current on photosynthesis and distribution of seagrasses. Aquatic Botany 27, 59–78.
Effects of current on photosynthesis and distribution of seagrasses.Crossref | GoogleScholarGoogle Scholar |

Fourqurean, J. W., Boyer, J. N., Durako, M. J., Hefty, L. N., and Peterson, B. J. (2003). Forecasting responses of seagrass distributions to changing water quality using monitoring data. Ecological Applications 13, 474–489.
Forecasting responses of seagrass distributions to changing water quality using monitoring data.Crossref | GoogleScholarGoogle Scholar |

Frederiksen, M., Krause-Jensen, D., Holmer, M., and Sund Laursen, J. (2004). Spatial and temporal variation in eelgrass (Zostera marina) landscapes: influence of physical setting. Aquatic Botany 78, 147–165.
Spatial and temporal variation in eelgrass (Zostera marina) landscapes: influence of physical setting.Crossref | GoogleScholarGoogle Scholar |

Gallegos, L. (2001). Calculating optical water quality targets to restore and protect submersed aquatic vegetation: overcoming problems in partitioning the diffuse attenuation coefficient for photosynthetically active radiation. Estuaries 24, 381–397.
Calculating optical water quality targets to restore and protect submersed aquatic vegetation: overcoming problems in partitioning the diffuse attenuation coefficient for photosynthetically active radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVOgsbk%3D&md5=5aba5754b5d39ec35ab8927fd54024deCAS |

Grech, A., and Coles, R. G. (2010). An ecosystem-scale predictive model of coastal seagrass distribution. Aquatic Conservation 20, 437–444.
An ecosystem-scale predictive model of coastal seagrass distribution.Crossref | GoogleScholarGoogle Scholar |

Greilach, P., You, Z., Black, K., and Gorman, R. (1997). Sediment characteristics in Port Phillip Bay. Port Phillip Bay Environmental Study. Technical report number 23. Marine and Freshwater Resources Institute, Queenscliff, Vic., Australia.

Gruber, R. K., and Kemp, M. W. (2010). Feedback effects in a coastal canopy-forming plant bed. Limnology and Oceanography 55, 2285–2298.
Feedback effects in a coastal canopy-forming plant bed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1emtL3P&md5=f290960ebc8bc2647f510babd76fa6f5CAS |

Harris, G., Batley, G., Fox, D., Hall, D., Jernakoff, P., Molloy, A., Murray, B., Newell, J., Parslow, G., Skyring, G., and Walker, S. (1996). Port Phillip Bay environmental study final report. CSIRO, Canberra, ACT, Australia. https://doi.org/10.4225/08/5856CF3221739

Harrison, S., Black, K. P., Bosserelle, C., and Lee, R. (2011a). Port Phillip and Western Port receiving water quality modelling: hydrodynamics. EPA publication number 1378. Environment Protection Authority Victoria, Melbourne, Vic., Australia. Available at http://www.epa.vic.gov.au/~/media/publications/1378 [Verified 7 February 2017].

Harrison, S., Black, K. P., and Bosserelle, C. (2011b). Port Phillip and Western Port receiving water quality modelling: Lagrangian dispersal. EPA publication number 1379. Environment Protection Authority Victoria, Melbourne, Vic., Australia. Available at http://www.epa.vic.gov.au/~/media/publications/1379 [Verified 7 February 2017].

Hill, N. A., Pepper, A. R., Puotinen, M. L., Hughes, M. G., Edgar, G. J., Barrett, N. S., Stuart-Smith, R. D., and Leaper, R. (2010). Quantifying wave exposure in shallow temperate reef systems: applicability of fetch models for predicting algal biodiversity. Marine Ecology Progress Series 417, 83–95.
Quantifying wave exposure in shallow temperate reef systems: applicability of fetch models for predicting algal biodiversity.Crossref | GoogleScholarGoogle Scholar |

Hipsey, M. R., Antenucci, J. P., Brookes, J. D., Burch, M. D., Regel, R. H., and Linden, L. (2004). A three-dimensional model of Cryptosporidium dynamics in lakes and reservoirs: a new tool for risk management. International Journal of River Basin Management 2, 181–197.
A three-dimensional model of Cryptosporidium dynamics in lakes and reservoirs: a new tool for risk management.Crossref | GoogleScholarGoogle Scholar |

Hirst, A., Heislers, S., Ball, D., Blake, S., and Coots, A. (2012). Baywide Seagrass Monitoring Program, milestone report number 15. Technical report series number 164. Department of Primary Industries, Queenscliff, Vic., Australia.

Hirst, A. J., Longmore, A. R., Ball, D., Cook, P. L. M., and Jenkins, G. P. (2016). Linking nitrogen sources utilised by seagrass in a temperate marine embayment to patterns of seagrass change during drought. Marine Ecology Progress Series 549, 79–88.
Linking nitrogen sources utilised by seagrass in a temperate marine embayment to patterns of seagrass change during drought.Crossref | GoogleScholarGoogle Scholar |

Holdgate, G. R., Geurin, B., Wallace, M. W., and Gallagher, S. J. (2001). Marine geology of Port Phillip, Victoria. Australian Journal of Earth Sciences 48, 439–455.
Marine geology of Port Phillip, Victoria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFyksrk%3D&md5=291b394f85b3f609fee9eddc965a2a8fCAS |

Jacobs, S. W. L., and Les, D. H. (2009). New combinations in Zostera (Zosteraceae). Telopea 12, 419–423.
New combinations in Zostera (Zosteraceae).Crossref | GoogleScholarGoogle Scholar |

Jenkins, G. P., Keough, M. J., Ball, D., Cook, P. L. M., Ferguson, A., Gay, J., Hirst, A., Lee, R., Longmore, A. R., Macreadie, P., Nayar, S., Sherman, C., Smith, T., Ross, D. J., and York, P. (2015). Seagrass resilience in Port Phillip Bay. Final report to the Seagrass and Reefs Program for Port Phillip Bay. University of Melbourne, Vic., Australia.

Kelble, C. R., Ortnerz, P. B., Hitchcock, G. L., and Boyer, J. N. (2005). Attenuation of photosynthetically available radiation (PAR) in Florida Bay: potential for light limitation of primary producers. Estuaries 28, 560–571.
Attenuation of photosynthetically available radiation (PAR) in Florida Bay: potential for light limitation of primary producers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWjs7nL&md5=4b66bde04de93d1d9e7d5b4d059c289dCAS |

Kendrick, G. A., Holmes, K. W., and Van Niel, K. P. (2008). Multi-scale spatial patterns of three seagrass species with different growth dynamics. Ecography 31, 191–200.
Multi-scale spatial patterns of three seagrass species with different growth dynamics.Crossref | GoogleScholarGoogle Scholar |

Kendrick, G. A., Orth, R. J., Statton, J., Hovey, R., Ruiz Montoya, L., Lowe, R. J., Krauss, S. L., and Sinclair, E. A. (2016). Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biological Reviews of the Cambridge Philosophical Society , .
Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses.Crossref | GoogleScholarGoogle Scholar |

Kissling, W. D., and Carl, G. (2008). Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography 17, 59–71.

Koch, E. W. (2001). Beyond light: physical, geological, and geochemical parameters as possible submerged aquatic vegetation habitat requirements. Estuaries 24, 1–17.
Beyond light: physical, geological, and geochemical parameters as possible submerged aquatic vegetation habitat requirements.Crossref | GoogleScholarGoogle Scholar |

Koch, E. W., Ackerman, J. D., Verduin, J., and Van Keulen, M. (2006). Fluid dynamics in seagrass ecology: from molecules to ecosystems. In ‘Seagrasses: Biology, Ecology and Conservation’. (Eds A. W. D. Larkum, R. J. Orth, and C. M. Duarte.) pp. 193–225. (Springer: Dordrecht, Netherlands.)

Krause-Jensen, D., Pedersen, M. F., and Jensen, C. (2003). Regulation of eelgrass (Zostera marina) cover along depth gradients in Danish coastal waters. Estuaries 26, 866–877.
Regulation of eelgrass (Zostera marina) cover along depth gradients in Danish coastal waters.Crossref | GoogleScholarGoogle Scholar |

Krause-Jensen, D., Sagert, S., Schubert, H., and Boström, C. (2008). Empirical relationships linking distribution and abundance of marine vegetation to eutrophication. Ecological Indicators 8, 515–529.
Empirical relationships linking distribution and abundance of marine vegetation to eutrophication.Crossref | GoogleScholarGoogle Scholar |

Krause-Jensen, D., Carstensen, J., Nielsen, S. L., Dalsgaard, T., Christensen, P. B., Fossing, H., and Rasmussen, M. B. (2011). Sea bottom characteristics affect depth limits of eelgrass Zostera marina. Marine Ecology Progress Series 425, 91–102.
Sea bottom characteristics affect depth limits of eelgrass Zostera marina.Crossref | GoogleScholarGoogle Scholar |

Kuo, J. (2005). A revision of the genus Heterozostera (Zosteraceae). Aquatic Botany 81, 97–140.
A revision of the genus Heterozostera (Zosteraceae).Crossref | GoogleScholarGoogle Scholar |

Lee, R. S., Black, K., Bosserel, C., and Greer, D. (2012). Present and future prolonged drought impacts on a large temperate embayment: Port Phillip Bay, Australia. Ocean Dynamics 62, 907–922.
Present and future prolonged drought impacts on a large temperate embayment: Port Phillip Bay, Australia.Crossref | GoogleScholarGoogle Scholar |

Lee, R., Greer, D., and Hirst, A. (2015a). Developing tools for the management of nutrient and sediment interactions with seagrass ecosystems in Port Phillip Bay: broad-scale modelling. EPA Technical Report 1591. Environmental Protection Authority, Melbourne, Vic., Australia.

Lee, R., Greer, D., Yeates, P., Dallimore, C., and Jenkins, G. (2015b). Developing tools for the management of nutrient and sediment interactions with seagrass ecosystems in Port Phillip Bay: sediment processes and light modelling for seagrass. EPA Technical Report 1592. Environmental Protection Authority, Melbourne, Vic., Australia.

Longmore, A. R., Cowdell, R. A., and Flint, R. (1996). Nutrient status of the water in Port Phillip Bay. CSIRO, Port Phillip Bay Environmental Study, Canberra, ACT, Australia.

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., and Williams, S. L. (2006). A global crisis for seagrass ecosystems. Bioscience 56, 987–996.
A global crisis for seagrass ecosystems.Crossref | GoogleScholarGoogle Scholar |

Peek, M. S., Leffler, A. J., Flint, S. D., and Ryel, R. J. (2003). How much variance is explained by ecologists? Additional perspectives. Oecologia 137, 161–170.
How much variance is explained by ecologists? Additional perspectives.Crossref | GoogleScholarGoogle Scholar |

Rasheed, M. A., and Unsworth, R. K. F. (2011). Long-term climate associated dynamics of a tropical seagrass meadow: implications for the future. Marine Ecology Progress Series 422, 93–103.
Long-term climate associated dynamics of a tropical seagrass meadow: implications for the future.Crossref | GoogleScholarGoogle Scholar |

Tiefelsdorf, M., Griffith, D. A., and Boots, B. (1999). A variance-stabilizing coding scheme for spatial link matrices. Environment & Planning A 31, 165–180.
A variance-stabilizing coding scheme for spatial link matrices.Crossref | GoogleScholarGoogle Scholar |

Timbal, B., Arblaster, J., Braganza, K., Fernandez, E., Hendon, H., Murphy, B., Raupach, M., Rakich, C., Smith, I., Whan, K., and Wheeler, M. (2010). Understanding the anthropogenic nature of the observed rainfall decline across South Eastern Australia. CAWCR Technical report number 026, Centre for Australian Weather and Climate Research, Melbourne, Vic., Australia. Available at http://www.cawcr.gov.au/technical-reports/CTR_026.pdf [Verified 7 February 2017].

van der Heide, T., Bouma, T. J., van Nes, E. H., Van de Koppel, J., Scheffer, M., Roelofs, J. G. M., van Katwijk, M. H., and Smolders, A. J. P. (2010). Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem. Ecology 91, 362–369.
Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem.Crossref | GoogleScholarGoogle Scholar |

van der Heide, T., van Nes, E. H., van Katwijk, M. H., Olff, H., and Smolders, A. J. P. (2011). Positive feedbacks in seagrass ecosystems: evidence from large-scale empirical data. PloS ONE 6, e16504.
Positive feedbacks in seagrass ecosystems: evidence from large-scale empirical data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1GlsLs%3D&md5=9d25f2fe1792ea4f0d649f8f9be95d93CAS |

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12377–12381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslGjsbo%3D&md5=79e51fc66b01536df6e67db553f25e06CAS |

Womersley, H. B. S. (1984). ‘The Marine Benthic Flora of Southern Australia. Part I.’ (Government Printer: Adelaide, SA, Australia.)