Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Otolith chemistry as an indicator of movements of albacore (Thunnus alalunga) in the North Atlantic Ocean

Igaratza Fraile A D , Haritz Arrizabalaga A , Josu Santiago A , Nicolas Goñi A , Igor Arregi A , Sonia Madinabeitia B , R. J. David Wells C and Jay R. Rooker C
+ Author Affiliations
- Author Affiliations

A AZTI Tecnalia, Marine Research Division, Herrera Kaia, Portualdea z/g, E-20110 Pasaia, Gipuzkoa, Spain.

B Department of Mineralogy and Petrology, University of the Basque Country (EHU), E-48080 Bilbao, Spain.

C Department of Marine Biology, Texas A&M University, 1001 Texas Clipper Road, Galveston, TX 77553, USA.

D Corresponding author. Email: ifraile@azti.es

Marine and Freshwater Research 67(7) 1002-1013 https://doi.org/10.1071/MF15097
Submitted: 5 March 2015  Accepted: 7 January 2016   Published: 29 April 2016

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Abstract

Albacore (Thunnus alalunga) in the North Atlantic Ocean is currently managed as a single well-mixed stock, although this assumption remains contentious. We measured stable isotopes (δ13C and δ18O) and trace elements (Mg, Mn, Sr, Ba) in otoliths of albacore collected from two feeding grounds, namely the Bay of Biscay and Atlantic offshore waters, and compared them among sampling locations and life history stages. Measurements in otolith core, post-core and edge were used to determine whether albacore from these two regions have the same nursery origin and migratory patterns. We found no clear evidence of distinct nursery grounds based on otolith core chemistry, but Sr : Ca and Mg : Ca were different in the post-core portions of albacore from the two locations, suggesting residency in different regions during the early juvenile stage. Otolith edge chemistry, particularly stable isotopes and Sr : Ca, proved to be a valuable tool for classifying individuals to their capture locations. Annual cycles of Sr : Ca ratios were visible along life history transects, likely reflecting migratory patterns between water masses of differing salinity, but the timing of Sr : Ca cycles differed between the two groups. Differentiation in trace element concentrations in the otolith post-core and the timing of Sr : Ca cycles suggest the occurrence of two migratory contingents of albacore in the north-east Atlantic Ocean.

Additional keywords: migratory contingents, population structure.


References

Albaina, A., Iriondo, M., Velado, I., Laconcha, U., Zarraonaindia, I., Arrizabalaga, H., Pardo, M. A., Lutcavage, M., Grant, W. S., and Estonba, A. (2013). Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Animal Genetics 44, 678–692.
Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs12mtbzL&md5=87d24997949b532f9c98bd45cf78fc75CAS | 23668670PubMed |

Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., García, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R. (2010). ‘World Ocean Atlas 2009 Volume 2: Salinity.’ (Ed. S. Levitus.) NOAA Atlas NESDIS 69. (US Government Printing Office: Washington, DC.) Available at http://www.nodc.noaa.gov/OC5/indprod.html [Verified 18 January 2016].

Arrizabalaga, H., Costas, E., Juste, J., González-Garcés, A., Nieto, B., and Victoria, L. R. (2004). Population structure of albacore Thunnus alalunga inferred from blood groups and tag–recapture analyses. Marine Ecology Progress Series 282, 245–252.
Population structure of albacore Thunnus alalunga inferred from blood groups and tag–recapture analyses.Crossref | GoogleScholarGoogle Scholar |

Bard, F. X. (1981). Le thon germon (Thunnus alalunga Bonnaterre 1788) de l’Océan Atlantique. Ph.D. Thesis, Université de Paris 6.

Bard, F. X. (2001). Extension of the geographical and vertical habitat of albacore (T. alalunga) in the North Atlantic. Possible consequences on true rate of exploitation of this stock. ICCAT Collective Volume of Scientific Papers 52, 1447–1456.

Brophy, D., Jeffries, E., and Danilowicz, S. (2004). Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Marine Biology 144, 779–786.
Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXis1Ghurw%3D&md5=f7a81a61a0f77c9064c590db2393964dCAS |

Brown, M. (1998). Ocean Data View 4.0. Oceanography 11, 19–21.
Ocean Data View 4.0.Crossref | GoogleScholarGoogle Scholar |

Campana, S. E., Fowler, A. J., and Jones, C. M. (1994). Elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS. Canadian Journal of Fisheries and Aquatic Sciences 51, 1942–1950.
Elemental fingerprinting for stock identification of Atlantic cod (Gadus morhua) using laser ablation ICPMS.Crossref | GoogleScholarGoogle Scholar |

Cosgrove, R., Arregi, I., Brophy, D., Arrizabalaga, H., Ortiz de Zárate, V., and Griffin, N. (2010). A simulated archival tagging programme for albacore (Thunnus alalunga) in the Northeast Atlantic, including an analysis of factors affecting tag recovery. ICES Journal of Marine Science 67, 1216–1221.
A simulated archival tagging programme for albacore (Thunnus alalunga) in the Northeast Atlantic, including an analysis of factors affecting tag recovery.Crossref | GoogleScholarGoogle Scholar |

Davies, C. A., Brophy, D., Jeffries, T., and Gosling, E. (2010). Trace elements in the otoliths and dorsal spines of albacore tuna (Thunnus alalunga, Bonnaterre, 1788): an assessment of the effectiveness of cleaning procedures at removing postmortem contamination. Journal of Experimental Marine Biology and Ecology 296, 162–170.

Davies, C. A., Gosling, E. M., Was, A., Brophy, D., and Tysklind, N. (2011). Microsatellite analysis of albacore tuna (Thunnus alalunga): population genetic structure in the north-east Atlantic Ocean and Mediterranean Sea. Marine Biology 158, 2727–2740.
Microsatellite analysis of albacore tuna (Thunnus alalunga): population genetic structure in the north-east Atlantic Ocean and Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |

DiMaria, R. A., Miller, J. A., and Hurst, T. P. (2010). Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus macrocephalu. Environmental Biology of Fishes 89, 453–462.
Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus macrocephalu.Crossref | GoogleScholarGoogle Scholar |

Dufour, F., Arrizabalaga, H., Irigoien, X., and Santiago, J. (2010). Climate impacts on albacore and bluefin tunas migrations phenology and spatial distribution. Progress in Oceanography 86, 283–290.
Climate impacts on albacore and bluefin tunas migrations phenology and spatial distribution.Crossref | GoogleScholarGoogle Scholar |

Elsdon, T. S., and Gillanders, B. M. (2002). Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish. Canadian Journal of Fisheries and Aquatic Sciences 59, 1796–1808.
Interactive effects of temperature and salinity on otolith chemistry: challenges for determining environmental histories of fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtlKhs70%3D&md5=9c62e75165ef1551930f65f7273f6c50CAS |

Farley, J. H., Williams, A. J., Hoyle, S. D., Davies, C. R., and Nicol, S. J. (2013). Reproductive dynamics and potential annual fecundity of South Pacific albacore tuna (Thunnus alalunga). PLoS One 8, e60577.
Reproductive dynamics and potential annual fecundity of South Pacific albacore tuna (Thunnus alalunga).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtVehtL8%3D&md5=ef3931bdc4ce1d7601a0a37a90fc0319CAS | 23565258PubMed |

Fonteneau, A. (2010). On the North Atlantic albacore stock and on its potential sub-populations. ICCAT Collective Volume of Scientific Papers 65, 1282–1290.

Fraile, I., Arrizabalaga, H., and Rooker, J. (2015). Origin of Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay. ICES Journal of Marine Science 72, 625–634.
Origin of Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay.Crossref | GoogleScholarGoogle Scholar |

Friedman, I., and O’Neil, J. R. (1977). Compilation of stable isotope fractionation factors of geochemical interest. In ‘Data of Geochemistry’. (Ed. M. Fleischer.) pp. 1–12. (United States Government Printing Office: Washington, DC.).

Goñi, N., and Arrizabalaga, H. (2005). Analysis of juvenile North Atlantic albacore (Thunnus alalunga) catch per unit effort by surface gears in relation to environmental variables. ICES Journal of Marine Science 62, 1475–1482.
Analysis of juvenile North Atlantic albacore (Thunnus alalunga) catch per unit effort by surface gears in relation to environmental variables.Crossref | GoogleScholarGoogle Scholar |

Harwood, A. J. P., Dennis, P. F., Marca, A. D., Pilling, G. M., and Millner, R. S. (2008). The oxygen isotope composition of water masses within the North Sea. Estuarine, Coastal and Shelf Science 78, 353–359.
The oxygen isotope composition of water masses within the North Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVKltbc%3D&md5=9570238cbb0b3f2920cf903aeda3924cCAS |

Hilborn, R., Punt, A. E., and Orenasanz, J. (2004). Beyond band-aids in fisheries management: fixing world fisheries. Bulletin of Marine Science 74, 493–507.

ICCAT (2011). Albacore. In ‘ICCAT Manual’. ICCAT Technical Report. (International Commission for the Conservation of Atlantic Tunas.) Available at http://www.iccat.es/Documents/SCRS/Manual/CH2/2_1_4_ALB_ENG.pdf [Verified 27 February 2016].

ICCAT (2012). Report of the Standing Committee on Research and Statistics (SCRS), Madrid, Spain, 1–5 October, executive summary ALB, 60–80. (International Commission for the Conservation of Atlantic Tunas: Madrid, Spain.)

ICCAT (2014). Report of the 2013 ICCAT Albacore Stock Assessment Session. ICCAT Collective Volume of Scientific Papers 70, 830–995.
Report of the 2013 ICCAT Albacore Stock Assessment Session.Crossref | GoogleScholarGoogle Scholar |

Jessop, B. M., Shiao, J. C., Iizuka, Y., and Tzeng, W. N. (2002). Migratory behaviour and habitat use by American eels Anguilla rostrata as revealed by otolith microchemistry. Marine Ecology Progress Series 233, 217–229.
Migratory behaviour and habitat use by American eels Anguilla rostrata as revealed by otolith microchemistry.Crossref | GoogleScholarGoogle Scholar |

Jochum, K. P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D. E., Stracke, A., Birbaum, K., Frick, D. A., Günther, D., and Enzweiler, J. (2011). Determination of reference values for NIST SRM 610617 glasses following ISO guidelines. Geostandards and Geoanalytical Research 35, 397–429.
Determination of reference values for NIST SRM 610617 glasses following ISO guidelines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFGlu78%3D&md5=86cdeeb3311e4795a2a10b669006da82CAS |

Johnson, K. S., Bereison, W. M., Coale, K. H., Coley, T. L., Elrod, V. A., Fairey, R. W., Iams, H. D., Kilgore, T. E., and Nowicki, J. L. (1992). Manganese flux from continental margin sediments in a transect through the oxygen minimum. Science 257, 1242–1245.
Manganese flux from continental margin sediments in a transect through the oxygen minimum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslOrtrk%3D&md5=78c0d8e6b03aec47352e4838577d060eCAS | 17742757PubMed |

Kim, S. T., O’Neil, J. R., Hillaire-Marcel, C., and Mucci, A. (2007). Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochimica et Cosmochimica Acta 71, 4704–4715.
Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFyku7jM&md5=31b0a061215f6263e01f9d280b93af0eCAS |

Klinkhammer, G. P., and McManus, J. (2001). Dissolved manganese in the Columbia River estuary: production in the water column. Geochimica et Cosmochimica Acta 65, 2835–2841.
Dissolved manganese in the Columbia River estuary: production in the water column.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVOmu7w%3D&md5=3e1bc88679174bbd0fea44dde8e2e2b4CAS |

Koto, T. (1969). Distribution and movement of the albacore in the Indian and the Atlantic oceans based on the catch statistics of Japanese tuna long-line fishery. Bulletin of Far Seas Fisheries Research Laboratory 1, 115–129.

Landing, W. M., and Bruland, K. W. (1980). Manganese in the North Pacific. Earth and Planetary Science Letters 49, 45–56.
Manganese in the North Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlt1Ckug%3D%3D&md5=0de56540c53ae262c5144ffe48810e2fCAS |

Lehodey, P., Senina, I., Dragon, A. C., and Arrizabalaga, H. (2014). Spatially explicit estimates of stock size, structure and biomass of North Atlantic albacore tuna (Thunnus alalunga). Earth System Science Data 6, 317–329.
Spatially explicit estimates of stock size, structure and biomass of North Atlantic albacore tuna (Thunnus alalunga).Crossref | GoogleScholarGoogle Scholar |

Limburg, K. E., Landergren, P., Westin, L., Elfman, M., and Kristiansson, P. (2001). Flexible modes of anadromy in Baltic sea trout: making the most of marginal spawning streams. Journal of Fish Biology 59, 682–695.
Flexible modes of anadromy in Baltic sea trout: making the most of marginal spawning streams.Crossref | GoogleScholarGoogle Scholar |

Ludsin, S. A., Fryer, B. J., and Gagnon, J. E. (2006). Comparison of solution-based versus laser-ablation ICPMS for analysis of larval fish otoliths. Transactions of the American Fisheries Society 135, 218–231.
Comparison of solution-based versus laser-ablation ICPMS for analysis of larval fish otoliths.Crossref | GoogleScholarGoogle Scholar |

Macdonald, J. I., Farley, J. H., Clear, N. P., Williams, A. J., Carter, T. I., Davies, C. R., and Nicol, S. J. (2013). Insights into mixing and movement of South Pacific albacore Thunnus alalunga derived from trace elements in otoliths. Fisheries Research 148, 56–63.
Insights into mixing and movement of South Pacific albacore Thunnus alalunga derived from trace elements in otoliths.Crossref | GoogleScholarGoogle Scholar |

Martin, G. B., and Thorrold, S. R. (2005). Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series 293, 223–232.
Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXps1CqtLw%3D&md5=364a12eec67799367dac243881ae0d9fCAS |

Martin, G. B., Thorrold, S. R., and Jones, C. M. (2004). Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Canadian Journal of Fisheries and Aquatic Sciences 61, 34–42.
Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslylurw%3D&md5=b843292a4e1d4e25006cb7facf07d27dCAS |

Mercier, L., Darnaude, A. M., Bruguier, O., Vasconcelos, R. P., Cabral, H. N., Costa, M. J., Lara, M., Jones, D. L., and Mouillot, D. (2011). Selecting statistical models and variable combinations for optimal classification using otolith microchemistry. Ecological Applications 21, 1352–1364.
Selecting statistical models and variable combinations for optimal classification using otolith microchemistry.Crossref | GoogleScholarGoogle Scholar | 21774435PubMed |

Montes, I., Iriondo, M., Manzano, C., Arrizabalaga, H., Jimnez, E., Pardo, M. A., Goñi, N., Davies, C. A., and Estonba, A. (2012). Worldwide genetic structure of albacore Thunnus alalunga revealed by microsatellite DNA markers. Marine Ecology Progress Series 471, 183–191.
Worldwide genetic structure of albacore Thunnus alalunga revealed by microsatellite DNA markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFChsrk%3D&md5=65a9db1564574d23e62e9a828bdd4c80CAS |

Ortiz de Zárate, V., Lavin, A., and Moreno-Ventas, X. (1998). Is there a relationship between environmental variables and the surface catch of albacore (Thunnus alalunga, Bonnaterre, 1788) in the North Atlantic? ICCAT Collective Volume of Scientific Papers 48, 250–252.

Ortiz de Zárate, V., Macías, D., Satoh, K., and Saito, H. (2004). Information on the reproduction of albacore (Thunnus alalunga) in the central and tropical North Atlantic in 2002. ICCAT Collective Volume of Scientific Papers 56, 1450–1462.

Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011). Iolite: freeware for the visualization and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26, 2508–2518.
Iolite: freeware for the visualization and processing of mass spectrometric data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKhs7rM&md5=08cee72054fa398cc91ede5cc1b36a3dCAS |

Paul, B., Paton, C., Norris, A., Woodhead, J., Hellstrom, J., Hergt, J., and Greig, A. (2012). CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment. Journal of Analytical Atomic Spectrometry 27, 700–706.
CellSpace: a module for creating spatially registered laser ablation images within the Iolite freeware environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjslalu7w%3D&md5=0b07e1cb2ba8d74474946ca91e62ab3dCAS |

Renck, C. L., Wells, R. J. D., and Dewar, H. (2014). Regional growth patterns of juvenile albacore (Thunnus alalunga) in the eastern North Pacific. California Cooperative Oceanic Fisheries Investigations Reports 55, 135–143.

Rooker, J. R., Secor, D. H., DeMetrio, G., Kaufman, A. J., Rios, A. B., and Ticina, V. (2008). Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Marine Ecology Progress Series 368, 231–239.
Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths.Crossref | GoogleScholarGoogle Scholar |

Rooker, J. R., Arrizabalaga, H., Fraile, I., Secor, D. H., Dettman, D. L., Abid, N., Addis, P., Deguara, S., Karakulak, S., Kimoto, A., Sakai, O., Macías-López, A. D., and Neves-Santos, M. (2014). Crossing the line: migratory and homing behaviours of Atlantic bluefin tuna. Marine Ecology Progress Series 504, 265–276.
Crossing the line: migratory and homing behaviours of Atlantic bluefin tuna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlKju7rI&md5=6ce3675bac303716c4594cec9343b10fCAS |

Sagarminaga, Y., and Arrizabalaga, H. (2014). Relationship of Northeast Atlantic albacore juveniles with upper surface thermal and chlorophyll-a fronts. Deep-sea Research. Part II, Topical Studies in Oceanography 107, 54–63.
Relationship of Northeast Atlantic albacore juveniles with upper surface thermal and chlorophyll-a fronts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1Ors7jO&md5=2c4502b9380ab061b874995de4a35071CAS |

Santiago, J. (2004). Dinámica de la población de atún blanco (Thunnus alalunga Bonaterre 1788) del Atlántico norte. Ph.D. Thesis, Servicio de Publicaciones del Gobierno Vasco, University of the Basque Country, Leioa, Spain.

Santiago, J., and Arrizabalaga, H. (2005). An integrated growth study for North Atlantic albacore (Thunnus alalunga Bonn. 1788). ICES Journal of Marine Science 62, 740–749.
An integrated growth study for North Atlantic albacore (Thunnus alalunga Bonn. 1788).Crossref | GoogleScholarGoogle Scholar |

Secor, D. H., and Rooker, J. R. (2000). Is otolith strontium a useful scalar of life cycles in estuarine fishes? Fisheries Research 46, 359–371.

Ueyanagi, S. (1971). Larval distribution of tunas and billfishes in the Atlantic Ocean. FAO Fisheries Report 71, 297–305.

Wang, C. H., Lin, Y. T., Shiao, J. C., You, C. F., and Tzeng, W. N. (2009). Spatiotemporal variation in the elemental compositions of otoliths of southern bluefin tuna Thunnus maccoyii in the Indian Ocean and its ecological implication. Journal of Fish Biology 75, 1173–1193.
Spatiotemporal variation in the elemental compositions of otoliths of southern bluefin tuna Thunnus maccoyii in the Indian Ocean and its ecological implication.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1SltbfL&md5=7ca0ae577b94c92fb6a8c703fd57f34bCAS | 20738607PubMed |

Wells, R. J. D., Rooker, J. R., and Itano, D. G. (2012). Nursery origin of yellowfin tuna in the Hawaiian Islands. Marine Ecology Progress Series 461, 187–196.
Nursery origin of yellowfin tuna in the Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFeru7%2FJ&md5=76004ddc3ab3e4ec410dad51d84be7cbCAS |

Wells, R. J. D., Kohin, S., Teo, S. L. H., Snodgrass, O. E., and Uosaki, K. (2013). Age and growth of North Pacific albacore (Thunnus alalunga): implications for stock assessment. Fisheries Research 147, 55–62.
Age and growth of North Pacific albacore (Thunnus alalunga): implications for stock assessment.Crossref | GoogleScholarGoogle Scholar |

Wells, R. J. D., Kinney, M. J., Kohin, S., Dewar, H., Rooker, J. R., and Snodgrass, O. E. (2015). Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific. ICES Journal of Marine Science 72, 2118–2127.
Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific.Crossref | GoogleScholarGoogle Scholar |

Zeileis, A., and Grothendieck, G. (2005). zoo: S3 infrastructure for regular and irregular time series. Journal of Statistical Software 14, 1–27.
zoo: S3 infrastructure for regular and irregular time series.Crossref | GoogleScholarGoogle Scholar |