Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Quantitative electron microprobe mapping of otoliths suggests elemental incorporation is affected by organic matrices: implications for the interpretation of otolith chemistry

A. McFadden A B E , B. Wade B , C. Izzo C , B. M. Gillanders C , C. E. Lenehan D and A. Pring D
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, School of Physical Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

B Adelaide Microscopy, The University of Adelaide, Frome Road, Adelaide, SA, 5005, Australia.

C Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.

D School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, 5042, Australia.

E Corresponding author. Email: aoife.mcfadden@adelaide.edu.au

Marine and Freshwater Research 67(7) 889-898 https://doi.org/10.1071/MF15074
Submitted: 25 February 2015  Accepted: 28 September 2015   Published: 27 November 2015

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Abstract

In an effort to understand the mechanism of otolith elemental incorporation, the distribution of strontium (Sr) and sulfur (S) in otoliths of Platycephalus bassensis was investigated in conjunction with otolith growth patterns. Optimisation of electron probe microanalysis (EPMA) quantitative mapping achieved both high spatial resolution (<3 µm) and two-dimensional visualisation of the fine scale Sr and S distributions in otoliths of P. bassensis with minimal damage. Electron backscatter diffraction (EBSD) mapping confirmed that grain growth is aligned with the otolith c-axis, with grain orientation independent of both otolith elemental composition and growth patterns. Results showed a linear correlation between Sr and S distribution (R2 = 0.86), and a clear association with the otolith growth patterns determined by scanning electron microscopy. Further examination by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) showed that incorporation of Mg and Ba appeared independent of both S distribution and the growth patterns. The results suggest that element incorporation into the otolith is linked to the organic composition in the endolymph during mineralisation, and the organic matrices may assist, in part, the uptake of Sr. Thus, these findings may have significant implications for the interpretation of otolith Sr chemistry.

Additional keywords: biomineralisation, electron backscatter diffraction, electron probe microanalysis, fish.


References

Addadi, L., and Weiner, S. (1985). Interactions between acidic proteins and crystals – stereochemical requirements in biomineralization. Proceedings of the National Academy of Sciences of the United States of America 82, 4110–4114.
Interactions between acidic proteins and crystals – stereochemical requirements in biomineralization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXks1ylsrs%3D&md5=2f50f8f758fbe9dee247c2e60ebf8854CAS | 3858868PubMed |

Addadi, L., Moradian, J., Shay, E., Maroudas, N. G., and Weiner, S. (1987). A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proceedings of the National Academy of Sciences of the United States of America 84, 2732–2736.
A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXlt12ms7w%3D&md5=7678077f33ca902858bae6bd902a7909CAS | 16593827PubMed |

Addadi, L., Joester, D., Nudelman, F., and Weiner, S. (2006). Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12, 980–987.
Mollusk shell formation: a source of new concepts for understanding biomineralization processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Wnur4%3D&md5=54c3abd52133e90f818664891895c635CAS | 16315200PubMed |

Albeck, S., Weiner, S., and Addadi, L. (1996). Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chemistry – a European Journal 2, 278–284.
Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVOrsbg%3D&md5=8a79b81d6d68cea21003b9cd488d86c6CAS |

Arias, J. L., Carrino, D. A., Fernandez, M. S., Rodriguez, J. P., Dennis, J. E., and Caplan, A. I. (1992). Partial biochemical and immunochemical characterization of avian eggshell extracellular matrices. Archives of Biochemistry and Biophysics 298, 293–302.
Partial biochemical and immunochemical characterization of avian eggshell extracellular matrices.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1Oqurk%3D&md5=5170d32f209202c5391cd49dc1bfe815CAS | 1524440PubMed |

Arias, J. L., Neira-Carrillo, A., Arias, J. I., Escobar, C., Bodero, M., David, M., and Fernandez, M. S. (2004). Sulfated polymers in biological mineralization: a plausible source for bio-inspired engineering. Journal of Materials Chemistry 14, 2154–2160.
Sulfated polymers in biological mineralization: a plausible source for bio-inspired engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egs7w%3D&md5=51318b7f7fb6d849d0856dfa6c67ed67CAS |

Barnes, T. C., and Gillanders, B. M. (2013). Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions. Canadian Journal of Fisheries and Aquatic Sciences 70, 1159–1166.
Combined effects of extrinsic and intrinsic factors on otolith chemistry: implications for environmental reconstructions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCisb3J&md5=25ec3c304cfa0ec3751b83ae5395b9baCAS |

Borelli, G., Mayer-Gostan, N., De Pontual, H., Boeuf, G., and Payan, P. (2001). Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima). Calcified Tissue International 69, 356–364.
Biochemical relationships between endolymph and otolith matrix in the trout (Oncorhynchus mykiss) and turbot (Psetta maxima).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvFykug%3D%3D&md5=342e84f50d68253f540aa7e2a59ffddfCAS | 11800233PubMed |

Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263–297.
Chemistry and composition of fish otoliths: pathways, mechanisms and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFKmtA%3D%3D&md5=6aa6bd7f37d02a8ee60835938650a0bdCAS |

Cuif, J.-P., Dauphin, Y., Doucet, J., Salome, M., and Susini, J. (2003). XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochimica et Cosmochimica Acta 67, 75–83.
XANES mapping of organic sulfate in three scleractinian coral skeletons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsV2ktLk%3D&md5=6348e283ea532b611128f788e87a2f75CAS |

Dauphin, Y., Cuif, J.-P., Salomé, M., and Susini, J. (2005). Speciation and distribution of sulfur in a mollusk shell as revealed by in situ maps using X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge. The American Mineralogist 90, 1748–1758.
Speciation and distribution of sulfur in a mollusk shell as revealed by in situ maps using X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GrtrnE&md5=bfb28121f74ff1be2ba35ea6e02c5a9eCAS |

de Vries, M. C., Gillanders, B. M., and Elsdon, T. S. (2005). Facilitation of barium uptake into fish otoliths: influence of strontium concentration and salinity. Geochimica et Cosmochimica Acta 69, 4061–4072.
Facilitation of barium uptake into fish otoliths: influence of strontium concentration and salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXot1Wrtrg%3D&md5=86fb5dfd488e61f889563378bcd06ca1CAS |

De Yoreo, J. J., and Vekilov, P. G. (2003). Principles of crystal nucleation and growth. Reviews in Mineralogy and Geochemistry 54, 57–93.
Principles of crystal nucleation and growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktVCmsw%3D%3D&md5=30495cd9b83e9f816f9eb673886f1b1cCAS |

Dietzel, M., Gussone, N., and Eisenhauer, A. (2004). Co-precipitation of Sr2+ and Ba2+ with aragonite by membrane diffusion of CO2 between 10 and 50°C. Chemical Geology 203, 139–151.
Co-precipitation of Sr2+ and Ba2+ with aragonite by membrane diffusion of CO2 between 10 and 50°C.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpslCltLc%3D&md5=c2e487e082f28371d1a7c81df308d639CAS |

Donovan, J. J., and Tingle, T. N. (1996). An improved mean atomic number background correction for quantitative microanalysis. Microscopy and Microanalysis 2, 1–7.
An improved mean atomic number background correction for quantitative microanalysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksVWks78%3D&md5=ed91816a3bd4e3acd629b69f4baa3e27CAS |

Doubleday, Z. A., Harris, H. H., Izzo, C., and Gillanders, B. M. (2014). Strontium randomly substituting for calcium in fish otolith aragonite. Analytical Chemistry 86, 865–869.
Strontium randomly substituting for calcium in fish otolith aragonite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvV2ku77M&md5=eb694917e610e6e393b90dad87646e0fCAS | 24299165PubMed |

Elsdon, T. S., Wells, B. K., Campana, S. E., Gillanders, B. M., Jones, C. M., Limburg, K. E., Secor, D. H., Thorrold, S. R., and Walther, B. D. (2008). Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. In ‘Oceanography and Marine Biology: An Annual Review’, Vol 46. (Eds R. N. Gibson, R. J. A. Atkinson and J. D. M. Gordon.) pp. 297–330. (CRC Press–Taylor & Francis Group: Boca Raton.)

Foster, L. C., Finch, A. A., Allison, N., Andersson, C., and Clarke, L. J. (2008). Mg in aragonitic bivalve shells: seasonal variations and mode of incorporation in Arctica islandica. Chemical Geology 254, 113–119.
Mg in aragonitic bivalve shells: seasonal variations and mode of incorporation in Arctica islandica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Smu78%3D&md5=b8897b23a0bae19c0f8eac9c7af15b12CAS |

Foster, L. C., Allison, N., Finch, A. A., and Andersson, C. (2009). Strontium distribution in the shell of the aragonite bivalve Arctica islandica. Geochemistry Geophysics, Geosystems 10, Q03003.
Strontium distribution in the shell of the aragonite bivalve Arctica islandica.Crossref | GoogleScholarGoogle Scholar |

Gunn, J. S., Harrowfield, I. R., Proctor, C. H., and Thresher, R. E. (1992). Electron probe microanalysis of fish otoliths: evaluation of techniques for studying age and stock discrimination. Journal of Experimental Marine Biology and Ecology 158, 1–36.
Electron probe microanalysis of fish otoliths: evaluation of techniques for studying age and stock discrimination.Crossref | GoogleScholarGoogle Scholar |

Jolivet, A., Bardeau, J.-F., Fablet, R., Paulet, Y.-M., and Pontual, H. (2008). Understanding otolith biomineralization processes: new insights into microscale spatial distribution of organic and mineral fractions from Raman microspectrometry. Analytical and Bioanalytical Chemistry 392, 551–560.
Understanding otolith biomineralization processes: new insights into microscale spatial distribution of organic and mineral fractions from Raman microspectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOrtrrJ&md5=1d72d878be8c5be938705435aec95027CAS | 18665353PubMed |

Kalish, J. M. (1989). Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition. Journal of Experimental Marine Biology and Ecology 132, 151–178.
Otolith microchemistry: validation of the effects of physiology, age and environment on otolith composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpsFyktQ%3D%3D&md5=b6b09cc965f998f18bbaa428167c44a3CAS |

Limburg, K. E., Walther, B. D., Lu, Z., Jackman, G., Mohan, J., Walther, Y., Nissling, A., Weber, P. K., and Schmitt, A. K. (2015). In search of the dead zone: use of otoliths for tracking fish exposure to hypoxia. Journal of Marine Systems 141, 167–178.
In search of the dead zone: use of otoliths for tracking fish exposure to hypoxia.Crossref | GoogleScholarGoogle Scholar |

Lowenstam, H. A., and Weiner, S. (1989) ‘On Biomineralization.’ (Oxford University Press: New York.)

Mann, S. (1988). Molecular recognition in biomineralization. Nature 332, 119–124.
Molecular recognition in biomineralization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXitFOrs7g%3D&md5=9b74a33ad77afc6ed0794cedff3cc28aCAS |

Otake, T. (1994). Drastic changes in otolith strontium/calcium ratios in leptocephali and glass eels of Japanese eel Anguilia japonica. Marine Ecology Progress Series 112, 189–193.
Drastic changes in otolith strontium/calcium ratios in leptocephali and glass eels of Japanese eel Anguilia japonica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitFSrtbw%3D&md5=101c275c29bc0224208b14974e4b19d2CAS |

Payan, P., Kossmann, H., Watrin, A., Mayer-Gostan, N., and Boeuf, G. (1997). Ionic composition of endolymph in teleosts: origin and importance of endolymph alkalinity. The Journal of Experimental Biology 200, 1905–1912.
| 1:CAS:528:DyaK2sXltFCntr8%3D&md5=de369a00ef9cb8a0dad61a408e3a3446CAS | 9232004PubMed |

Payan, P., Borelli, G., Priouzeau, F., De Pontual, H., Boeuf, G., and Mayer-Gostan, N. (2002). Otolith growth in trout Oncorhynchus mykiss: supply of Ca2+ and Sr2+ to the saccular endolymph. The Journal of Experimental Biology 205, 2687–2695.
| 1:CAS:528:DC%2BD38XnvVWjs7c%3D&md5=dfb686486dc6fb7d66d3d2aad673901cCAS | 12151374PubMed |

Pingitore, N. E. (1986). Modes of coprecipitation of Ba2+ and Sr2+ with calcite. ACS Symposium Series 323, 574–586.
Modes of coprecipitation of Ba2+ and Sr2+ with calcite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFajtQ%3D%3D&md5=380fa20c3b84f888343b58d931af5f17CAS |

Poulain, C., Gillikin, D. P., Thebault, J., Munaron, J. M., Bohn, M., Robert, R., Paulet, Y.-M., and Lorrain, A. (2015). An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells. Chemical Geology 396, 42–50.
An evaluation of Mg/Ca, Sr/Ca, and Ba/Ca ratios as environmental proxies in aragonite bivalve shells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkslyqtw%3D%3D&md5=ddf11165a171891360c5510fd8485a31CAS |

Reis-Santos, P., Tanner, S. E., Elsdon, T. S., Cabral, H. N., and Gillanders, B. M. (2013). Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology 446, 245–252.
Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSls7nF&md5=a27274764433310ae01a6bbb8487b50aCAS |

Schöne, B. R., Radermacher, P., Zhang, Z., and Jacob, D. E. (2013). Crystal fabrics and element impurities (Sr/Ca, Mg/Ca, and Ba/Ca) in shells of Arctica islandica: implications for paleoclimate reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 373, 50–59.
Crystal fabrics and element impurities (Sr/Ca, Mg/Ca, and Ba/Ca) in shells of Arctica islandica: implications for paleoclimate reconstructions.Crossref | GoogleScholarGoogle Scholar |

Shirai, K., Schöne, B. R., Miyaji, T., Radarmacher, P., Krause, R. A., and Tanabe, K. (2014). Assessment of the mechanism of elemental incorporation into bivalve shells (Arctica islandica) based on elemental distribution at the microstructural scale. Geochimica et Cosmochimica Acta 126, 307–320.
Assessment of the mechanism of elemental incorporation into bivalve shells (Arctica islandica) based on elemental distribution at the microstructural scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps12muw%3D%3D&md5=a758282e86e77c57a44dff650ff77b27CAS |

Simkiss, K. (1965). Organic matric of oyster shell. Comparative Biochemistry and Physiology 16, 427–435.
Organic matric of oyster shell.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xjsl2msA%3D%3D&md5=bcca5b4f971368ff36fd5768c83b46c7CAS | 5881749PubMed |

Siriprom, W., Kaewkhao, J., Phachana, K., and Limsuwan, P. (2011). Crystal structure and morphology dependence of the phase of mollusc shell: a case study of XRD, SEM and ESR. In ‘2nd International Symposium on Advanced Magnetic Materials and Applications (ISAMMA 2010)’, 12–16 July 2010, Sendai, Japan. (Eds M. Takahashi, H. Saito, S. Yoshimura, K. Takanashi, M. Sahashi, and M. Tsunoda). Vol. 266, paper 012124. (IOP Publishing Ltd: Bristol.)

Tomás, J., Geffen, A. J., Millner, R. S., Pineiro, C. G., and Tserpes, G. (2006). Elemental composition of otolith growth marks in three geographically separated populations of European hake (Merluccius merluccius). Marine Biology 148, 1399–1413.
Elemental composition of otolith growth marks in three geographically separated populations of European hake (Merluccius merluccius).Crossref | GoogleScholarGoogle Scholar |

Toole, C., Markle, D. F., and Harris, P. M. (1993). Relationships between otolith microstructure. microchemistry, and early life history events in Dover sole, Microstomus pacificus. Fish Bulletin 91, 732–753.

Tzeng, W.-N. (1996). Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel. Journal of Experimental Marine Biology and Ecology 199, 111–122.
Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlsVWgtbs%3D&md5=7a8bf9d31ffd5d4141a652eb6967dc98CAS |

Vincent, L., and Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13, 583–598.
Watersheds in digital spaces: an efficient algorithm based on immersion simulations.Crossref | GoogleScholarGoogle Scholar |

Weber, P. K., Hutcheon, I. D., McKeegan, K. D., and Ingram, B. L. (2002). Otolith sulfur isotope method to reconstruct salmon (Oncorhynchus tshawytscha) life history. Canadian Journal of Fisheries and Aquatic Sciences 59, 923–923.
Otolith sulfur isotope method to reconstruct salmon (Oncorhynchus tshawytscha) life history.Crossref | GoogleScholarGoogle Scholar |

Weiner, S. (1986). Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC Critical Reviews in Biochemistry 20, 365–408.
Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsVyhtrs%3D&md5=0825c295c0b8989607395154cd487ef5CAS | 3524990PubMed |

Weiner, S., and Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. In ‘Biomineralization’, Vol. 54. (Eds P. M. Dove, J. J. DeYoreo and S. Weiner.) pp. 1–29. (Mineralogical Society of America: Washington, DC.)

Wilt, F. H. (1999). Matrix and mineral in the sea urchin larval skeleton. Journal of Structural Biology 126, 216–226.
Matrix and mineral in the sea urchin larval skeleton.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1Mvgt1Sjsg%3D%3D&md5=ba6da7a6d7bcb48844dad61058b553c9CAS | 10475684PubMed |

Woodcock, S. H., Grieshaber, C. A., and Walther, B. D. (2013). Dietary transfer of enriched stable isotopes to mark otoliths, fin rays, and scales. Canadian Journal of Fisheries and Aquatic Sciences 70, 1–4.
Dietary transfer of enriched stable isotopes to mark otoliths, fin rays, and scales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslahs7k%3D&md5=a7c388de4579097bbf9306c274c0c8e6CAS |

Woodhead, J. D., Hellstrom, J., Hergt, J. M., Greig, A., and Maas, R. (2007). Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma–mass spectrometry. Geostandards and Geoanalytical Research 31, 331–343.
Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhs1Wlurs%3D&md5=85e7f6e4bc77928137bcd602d40e7faeCAS |

Yoshimura, T., Tamenori, Y., Suzuki, A., Nakashima, R., Iwasaki, N., Hasegawa, H., and Kawahata, H. (2013). Element profile and chemical environment of sulfur in a giant clam shell: insights from μ-XRF and X-ray absorption near-edge structure. Chemical Geology 352, 170–175.
Element profile and chemical environment of sulfur in a giant clam shell: insights from μ-XRF and X-ray absorption near-edge structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFOkt73K&md5=1010259830ece52bf344c425c67b50a4CAS |

Zimmerman, C. E., and Nielsen, R. L. (2003). Effect of analytical conditions in wavelength dispersive electron microprobe analysis on the measurement of strontium-to-calcium (Sr/Ca) ratios in otoliths of anadromous salmonids. Fishery Bulletin 101, 712–718.