Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The effect of elevated CO2 on autotrophic picoplankton abundance and production in a eutrophic lake (Lake Taihu, China)

Shengnan Li A B , Jian Zhou A B , Lijun Wei A B , Fanxiang Kong A and Xiaoli Shi A C
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

B University of Chinese Academy of Sciences, Beijing 100049, China.

C Corresponding author. Email: xlshi@niglas.ac.cn

Marine and Freshwater Research 67(3) 319-326 https://doi.org/10.1071/MF14353
Submitted: 8 November 2014  Accepted: 12 February 2015   Published: 22 June 2015

Abstract

The effects of elevated CO2 concentrations on the community structure and primary production of the autotrophic picoplankton of a eutrophic lake were studied in Lake Taihu, China. We conducted in situ experiments with three CO2 concentrations (270, 380 and 750 ppm) over four seasons during 2012 and 2013. Our results showed that phycocyanin-rich picocyanobacteria were dominant in winter and that photosynthetic picoeukaryotes were prevalent during the other three seasons. CO2 elevation could significantly increase the abundance of photosynthetic picoeukaryotes in all seasons except winter, but did not have any influence on picocyanobacterial abundance. CO2 enrichment caused an increase in the primary production of the picoplankton community in most seasons, and significant differences were observed among the treatments in summer and winter. In addition, the contribution of picoplankton to total primary production significantly increased under higher CO2 concentrations in winter. The increase in the abundance of photosynthetic picoeukaryotes and the primary production of picoplankton under high CO2 concentrations may reduce the transfer of matter and energy to higher trophic levels and increase the importance of the microbial food web.

Additional keywords: flow cytometry, photosynthetic picoeukaryotes, picocyanobacteria.


References

Azam, F., Fenchel, T., Field, J., Gray, J., Meyer-Reil, L., and Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10, 257–263.
The ecological role of water-column microbes in the sea.Crossref | GoogleScholarGoogle Scholar |

Badger, M. R., and Price, G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany 54, 609–622.
CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1artbY%3D&md5=17e32236300210925392168280783befCAS | 12554704PubMed |

Balmer, M. B., and Downing, J. A. (2011). Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters 1, 125–132.
Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFSqtLnL&md5=633bb6ed894154cb4b0d760fea4ef4fdCAS |

Brussaard, C., Noordeloos, A., Witte, H., Collenteur, M., Schulz, K., Ludwig, A., and Riebesell, U. (2013). Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences 10, 719–731.
Arctic microbial community dynamics influenced by elevated CO2 levels.Crossref | GoogleScholarGoogle Scholar |

Cai, Y., and Kong, F. (2013). Diversity and dynamics of picocyanobacteria and the bloom-forming cyanobacteria in a large shallow eutrophic lake (lake Chaohu, China). Journal of Limnology 72, e38.
Diversity and dynamics of picocyanobacteria and the bloom-forming cyanobacteria in a large shallow eutrophic lake (lake Chaohu, China).Crossref | GoogleScholarGoogle Scholar |

Callieri, C. (2008). Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Reviews 1, 1–28.
Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs.Crossref | GoogleScholarGoogle Scholar |

Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science 265, 1568–1570.
Carbon dioxide supersaturation in the surface waters of lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFagsrc%3D&md5=1c8b1fc1ac52c120056c2295774749b3CAS | 17801536PubMed |

Duan, H., Ma, R., Xu, X., Kong, F., Zhang, S., Kong, W., Hao, J., and Shang, L. (2009). Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environmental Science & Technology 43, 3522–3528.
Two-decade reconstruction of algal blooms in China’s Lake Taihu.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktF2htL0%3D&md5=d5eee0006cbfbc0b0beb43239f337b07CAS |

Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J.-P., Harlay, J., and Heemann, C. (2005). Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography 50, 493–507.
Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFahs7k%3D&md5=bedece13205a090ed7eb14ed98016377CAS |

Engel, A., Schulz, K. G., Riebesell, U., Bellerby, R., Delille, B., and Schartau, M. (2008). Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences 5, 509–521.
Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtF2iurjJ&md5=e58db8962bf0b466eb45fb7d5120cc89CAS |

Falkowski, P., Scholes, R., Boyle, E. a., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., and Linder, S. (2000). The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291–296.
The global carbon cycle: a test of our knowledge of earth as a system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnsVGisrg%3D&md5=b3f654659e96ce8b57f331d553c48c89CAS | 11030643PubMed |

Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y., and Hutchins, D. A. (2007). Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). Journal of Phycology 43, 485–496.
Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria).Crossref | GoogleScholarGoogle Scholar |

Giordano, M., Beardall, J., and Raven, J. A. (2005). CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56, 99–131.
CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtVaru7w%3D&md5=d48aab053c38c085d6e8e933169587d5CAS | 15862091PubMed |

Hein, M., and Sand-Jensen, K. (1997). CO2 increases oceanic primary production. Nature 388, 526–527.
CO2 increases oceanic primary production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlt1arsbk%3D&md5=5f596e8ab7177d22b5408769da56753bCAS |

Jansson, M., Karlsson, J., and Jonsson, A. (2012). Carbon dioxide supersaturation promotes primary production in lakes. Ecology Letters 15, 527–532.
Carbon dioxide supersaturation promotes primary production in lakes.Crossref | GoogleScholarGoogle Scholar | 22420750PubMed |

Jiao, N., Zhang, Y., and Zeng, Y. (2006). ‘Marine Microbial Ecology.’ (Science Press: Beijing.)

Kaplan, A., and Reinhold, L. (1999). CO2 concentrating mechanisms in photosynthetic microorganisms. Annual Review of Plant Biology 50, 539–570.
CO2 concentrating mechanisms in photosynthetic microorganisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1yktr8%3D&md5=9fd442c0961f1304800e2fe2853be415CAS |

Lane, D., Beaumont, A., and Hunter, J. (1994). Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Marine Biology 114, 85–95.

Larsson, U., and Hagström, Å. (1982). Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient. Marine Biology 67, 57–70.
Fractionated phytoplankton primary production, exudate release and bacterial production in a Baltic eutrophication gradient.Crossref | GoogleScholarGoogle Scholar |

Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and McCarthy, J. J. (2000). Temperature effects on export production in the open ocean. Global Biogeochemical Cycles 14, 1231–1246.
Temperature effects on export production in the open ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVGktw%3D%3D&md5=da039feb27809eb39c92df892548e3d7CAS |

Lefranc, M., Thénot, A., Lepere, C., and Debroas, D. (2005). Genetic diversity of small eukaryotes in lakes differing by their trophic status. Applied and Environmental Microbiology 71, 5935–5942.
Genetic diversity of small eukaryotes in lakes differing by their trophic status.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFajtbvP&md5=caaa75fd96b411ddf5e7960e2b069a05CAS | 16204507PubMed |

Lindström, E. S., Weisse, T., and Stadler, P. (2002). Enumeration of small ciliates in culture by flow cytometry and nucleic acid staining. Journal of Microbiological Methods 49, 173–182.
Enumeration of small ciliates in culture by flow cytometry and nucleic acid staining.Crossref | GoogleScholarGoogle Scholar | 11830303PubMed |

Malinsky-Rushansky, N., and Legrand, C. (1996). Excretion of dissolved organic carbon by phytoplankton of different sizes and subsequent bacterial uptake. Marine Ecology Progress Series 132, 249–255.
Excretion of dissolved organic carbon by phytoplankton of different sizes and subsequent bacterial uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVWltbc%3D&md5=c7354c91dcbb5c082b98245eb143583aCAS |

Malone, T., Ducklow, H., Peele, E., and Pike, S. (1991). Picoplankton carbon flux in Chesapeake Bay. Marine Ecology Progress Series 78, 11–22.
Picoplankton carbon flux in Chesapeake Bay.Crossref | GoogleScholarGoogle Scholar |

Meakin, N. G., and Wyman, M. (2011). Rapid shifts in picoeukaryote community structure in response to ocean acidification. The ISME Journal 5, 1397–1405.
Rapid shifts in picoeukaryote community structure in response to ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVKjsLjJ&md5=8396326717d801411f738c523a7c9c5bCAS | 21412344PubMed |

Neuer, S. (1992). Growth dynamics of marine Synechococcus spp. in the Gulf of Alaska. Marine Ecology Progress Series 83, 251–262.
Growth dynamics of marine Synechococcus spp. in the Gulf of Alaska.Crossref | GoogleScholarGoogle Scholar |

Ogawa, T., and Kaplan, A. (2003). Inorganic carbon acquisition systems in cyanobacteria. Photosynthesis Research 77, 105–115.
Inorganic carbon acquisition systems in cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsF2mt7g%3D&md5=d5342f94a730650d99d23a5438179dbeCAS | 16228369PubMed |

Paulino, A., Egge, J., and Larsen, A. (2008). Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences 5, 739–748.
Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCqsLrI&md5=839685f6b80b2d356616172fd5bd1399CAS |

Pérez, G. L., Queimaliños, C. P., and Modenutti, B. E. (2002). Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. Journal of Plankton Research 24, 591–599.
Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes.Crossref | GoogleScholarGoogle Scholar |

Phinney, D., and Cucci, T. (1989). Flow cytometry and phytoplankton. Cytometry 10, 511–521.
Flow cytometry and phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mznsleruw%3D%3D&md5=edc0a74ff7a597749313701653f064d1CAS | 2776567PubMed |

Pomeroy, L. R. (1974). The ocean’s food web, a changing paradigm. Bioscience 24, 499–504.
The ocean’s food web, a changing paradigm.Crossref | GoogleScholarGoogle Scholar |

Riebesell, U. (2004). Effects of CO2 enrichment on marine phytoplankton. Journal of Oceanography 60, 719–729.
Effects of CO2 enrichment on marine phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVSjsLg%3D&md5=f3066638a63de1ec3f63085f21abf152CAS |

Sampou, P., and Kemp, W. (1994). Factors regulating plankton community respiration in Chesapeake Bay. Marine Ecology Progress Series 110, 249–258.
Factors regulating plankton community respiration in Chesapeake Bay.Crossref | GoogleScholarGoogle Scholar |

Schippers, P., Lürling, M., and Scheffer, M. (2004). Increase of atmospheric CO2 promotes phytoplankton productivity. Ecology Letters 7, 446–451.
Increase of atmospheric CO2 promotes phytoplankton productivity.Crossref | GoogleScholarGoogle Scholar |

Shapiro, L. P., and Haugen, E. M. (1988). Seasonal distribution and temperature tolerance of Synechococcus in Boothbay Harbor, Maine. Estuarine, Coastal and Shelf Science 26, 517–525.
Seasonal distribution and temperature tolerance of Synechococcus in Boothbay Harbor, Maine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXks1Wjtb0%3D&md5=da35b6da93d8b122ce2075fc81b2bd9aCAS |

Silvoso, J., Izaguirre, I., and Allende, L. (2011). Picoplankton structure in clear and turbid eutrophic shallow lakes: a seasonal study. Limnologica-Ecology and Management of Inland Waters 41, 181–190.
Picoplankton structure in clear and turbid eutrophic shallow lakes: a seasonal study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvFCntr8%3D&md5=534f39f15406cabb0f3b224c5673a5acCAS |

Smith, E. M., and Kemp, W. M. (2001). Size structure and the production/respiration balance in a coastal plankton community. Limnology and Oceanography 46, 473–485.
Size structure and the production/respiration balance in a coastal plankton community.Crossref | GoogleScholarGoogle Scholar |

Somogyi, B., Felföldi, T., Vanyovszki, J., Ágyi, Á., Márialigeti, K., and Vörös, L. (2009). Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquatic Ecology 43, 735–744.
Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtV2ntr%2FN&md5=13073f7029fbb92317cf4c1407f7df9aCAS |

Song, L., Chen, W., Peng, L., Wan, N., Gan, N., and Zhang, X. (2007). Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Research 41, 2853–2864.
Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1GktLw%3D&md5=d7ff7fbb8d660fe2b6adc0ae89d417a6CAS | 17537477PubMed |

Stockner, J. G. (1988). Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnology and Oceanography 33, 765–775.
Phototrophic picoplankton: an overview from marine and freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlslGkur4%3D&md5=1bcd9ce4a3b158ecb0eeee8faf57a420CAS |

Stockner, J. G., and Shortreed, K. (1989). Algal picoplankton production and contribution to food-webs in oligotrophic British Columbia lakes. Hydrobiologia 173, 151–166.
Algal picoplankton production and contribution to food-webs in oligotrophic British Columbia lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkvVelsbc%3D&md5=d4911102000b539027603217a8fdb322CAS |

Tortell, P. D., DiTullio, G. R., Sigman, D. M., and Morel, F. (2002). CO2 effects on taxonomic composition and nutrient utilization in an equatorial Pacific phytoplankton assemblage. Marine Ecology Progress Series 236, 37–43.
CO2 effects on taxonomic composition and nutrient utilization in an equatorial Pacific phytoplankton assemblage.Crossref | GoogleScholarGoogle Scholar |

Trolle, D., Staehr, P. A., Davidson, T. A., Bjerring, R., Lauridsen, T. L., Søndergaard, M., and Jeppesen, E. (2012). Seasonal dynamics of CO2 flux across the surface of shallow temperate lakes. Ecosystems 15, 336–347.
Seasonal dynamics of CO2 flux across the surface of shallow temperate lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtFOhsLY%3D&md5=df1bd5673fa603caee1c7d4407f683dbCAS |

Vörös, L., Callieri, C., Katalin, V., and Bertoni, R. (1998). Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobialogia 369/370, 117–125.
Freshwater picocyanobacteria along a trophic gradient and light quality range.Crossref | GoogleScholarGoogle Scholar |

Waterbury, J. B., Watson, S. W., Guillard, R. R., and Brand, L. E. (1979). Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277, 293–294.
Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium.Crossref | GoogleScholarGoogle Scholar |

Waterbury, J. B., Watson, S. W., Valois, F. W., and Franks, D. G. (1986). Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Canadian Journal of Fisheries and Aquatic Sciences 214, 71–120.

Weisse, T. (1993). Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Advances in Microbial Ecology 13, 327–370.
Dynamics of autotrophic picoplankton in marine and freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar |

Williams, P. (1981). Microbial contribution to overall marine plankton metabolism-direct measurements of respiration. Oceanologica Acta 4, 359–364.

Xie, W., Wang, Z., Kong, F., and Shi, X. (2012). Genetic diversity of photosynthetic picoeukaryotes in Lake Taihu. Journal of Lake Sciences 24, 123–128.

Xie, W., Gong, Y., Wang, Z., Kong, F., and Shi, X. (2013). Use of flow cytometric sorting to assess the diversity of eukaryotic picophytoplankton of lakes. Chinese Environmental Science 34, 1485–1491.
| 1:CAS:528:DC%2BC2cXjvF2gsr4%3D&md5=cd1a0e3da35eae40d3352b85c3981e7bCAS |