Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments

Roberta C. Challener A D , Lisa L. Robbins B and James B. McClintock C
+ Author Affiliations
- Author Affiliations

A Department of Biology, Bellarmine University, Louisville, KY 40205, USA.

B Saint Petersburg Coastal and Marine Science Center, US Geological Survey, St Petersburg, FL 33701, USA.

C Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

D Corresponding author. Email rchallener@bellarmine.edu

Marine and Freshwater Research 67(2) 163-172 https://doi.org/10.1071/MF14219
Submitted: 30 July 2014  Accepted: 3 February 2015   Published: 25 May 2015

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Abstract

Open ocean observations have shown that increasing levels of anthropogenically derived atmospheric CO2 are causing acidification of the world’s oceans. Yet little is known about coastal acidification and studies are just beginning to characterise the carbonate chemistry of shallow, nearshore zones where many ecologically and economically important organisms occur. We characterised the carbonate chemistry of seawater within an area dominated by seagrass beds (Saint Joseph Bay, Florida) to determine the extent of variation in pH and pCO2 over monthly and daily timescales. Distinct diel and seasonal fluctuations were observed at daily and monthly timescales respectively, indicating the influence of photosynthetic and respiratory processes on the local carbonate chemistry. Over the course of a year, the range in monthly values of pH (7.36–8.28), aragonite saturation state (0.65–5.63), and calculated pCO2 (195–2537 μatm) were significant. When sampled on a daily basis the range in pH (7.70–8.06), aragonite saturation state (1.86–3.85), and calculated pCO2 (379–1019 μatm) also exhibited significant range and indicated variation between timescales. The results of this study have significant implications for the design of ocean acidification experiments where nearshore species are utilised and indicate that coastal species are experiencing far greater fluctuations in carbonate chemistry than previously thought.

Additional keywords: benthic zone, climate change, echinoderms


References

Beddingfield, S. D., and McClintock, J. B. (2000). Demographic characteristics of Lytechinus variegatus (Echinoidea: Echinodermata) from three habitats in a North Florida bay, Gulf of Mexico. Marine Ecology (Berlin) 21, 17–40.
Demographic characteristics of Lytechinus variegatus (Echinoidea: Echinodermata) from three habitats in a North Florida bay, Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Beer, S., Mtolera, M., Lyimo, T., and Björk, M. (2006). The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal. Aquatic Botany 84, 367–371.
The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivVGkurY%3D&md5=0e4c95d2969521e8cefc8209713ac09fCAS |

Bockmon, E. E., and Dickson, A. G. (2014). Seawater filtration method suitable for total dissolved inorganic carbon and pH analyses. Limnology and Oceanography, Methods 12, 191–195.

Borges, A. V., and Frankignoulle, M. (1999). Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas. Journal of Marine Systems 19, 251–266.
Daily and seasonal variations of the partial pressure of CO2 in surface seawater along Belgian and southern Dutch coastal areas.Crossref | GoogleScholarGoogle Scholar |

Byrne, M. (2011). Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology - an Annual Review 49, 1–42.

Challener, R. C., McClintock, J. B., and Makowsky, R. (2013). Effects of reduced carbonate saturation state on early development in the common edible sea urchin Lytechinus variegatus: implications for land-based aquaculture. Journal of Applied Aquaculture 25, 154–175.
Effects of reduced carbonate saturation state on early development in the common edible sea urchin Lytechinus variegatus: implications for land-based aquaculture.Crossref | GoogleScholarGoogle Scholar |

Daniel, M. J., and Boyden, C. R. (1975). Diurnal variations in physico-chemical conditions within intertidal rockpools. Field Studies 4, 161–176.

DeGrandpre, M. D., Hammar, T. R., Smith, S. P., and Sayles, F. L. (1995). In situ measurements of seawater pCO2. Limnology and Oceanography 40, 969–975.
In situ measurements of seawater pCO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFent7o%3D&md5=9d599d09757e2b704ecfe5663face39dCAS |

Dickson, A. G. (1990). Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15K. Deep-Sea Research. Part A, Oceanographic Research Papers 37, 755–766.
Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXivFKmug%3D%3D&md5=9496c8d1342e8b4b73b844cb9e9cafacCAS |

Dickson, A. G., Sabine, C. L., and Christian, J. R. (Eds) (2007). ‘Guide to Best Practices for Ocean CO2 Measurements.’ PICES Special Publication number 3. Sidney, BC, Canada.

Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1, 169–192.
Ocean acidification: the other CO2 problem.Crossref | GoogleScholarGoogle Scholar | 21141034PubMed |

Dupont, S., Ortega-Martínez, O., and Thorndyke, M. (2010). Impact of near-future ocean acidification on echinoderms. Ecotoxicology (London, England) 19, 449–462.
Impact of near-future ocean acidification on echinoderms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtVGjsbk%3D&md5=095a115b95dd627912ff7ce95a80916eCAS |

Dupont, S., Dorey, N., Stumpp, M., Melzner, F., and Thorndyke, M. (2012). Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Marine Biology , .
Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis.Crossref | GoogleScholarGoogle Scholar | 24391285PubMed |

Fabry, V. J., Seibel, B. A., Feely, R. A., and Orr, J. C. (2008). Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science 65, 414–432.
Impacts of ocean acidification on marine fauna and ecosystem processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFegtL4%3D&md5=51e793d49d48944e0ade5a432c1e3adeCAS |

FDEP (2012). Site-specific information in support of establishing numeric nutrient criteria for St Joseph Bay. Division of Environmental Assessment and Restoration, Standards and Assessment Section, Florida Department of Environmental Protection. Tallahassee, FL. Available at http://www.dep.state.fl.us/water/wqssp/nutrients/docs/estuaries/st_joe_bay_nutrie nt-tsd.pdf [Verified 25 November 2014].

Florida Environmental Research Institute (FERI) (2006). St Joseph Bay Aquatic Preserve – hyperspectral imaging. Tampa, FL. Available at https://feri.s3.amazonaws.com/pubs_ppts/Final+Report_StJoe_w_Appendices.pdf [Verified 25 November 2014].

Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J., Brownlee, C., Fabian, H., and Wheeler, G. L. (2012). Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change 2, 510–513.
Changes in pH at the exterior surface of plankton with ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGiu7w%3D&md5=1124ab66598a6d9222e16c3382d21cdfCAS |

Gacia, E., and Duarte, C. M. (2001). Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Estuarine, Coastal and Shelf Science 52, 505–514.
Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension.Crossref | GoogleScholarGoogle Scholar |

Gattuso, J.-P., Frankignoulle, M., and Smith, S. V. (1999). Measurement of community metabolism and significance in the coral reef CO2 source–sink debate. Proceedings of the National Academy of Sciences of the United States of America 96, 13017–13022.
Measurement of community metabolism and significance in the coral reef CO2 source–sink debate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Gmsro%3D&md5=b26a858c6a096292ed3bd284cd9700dfCAS | 10557265PubMed |

Hales, B., Takahashi, T., and Bandstra, L. (2005). Atmospheric CO2 uptake by a coastal upwelling system. Global Biogeochemical Cycles 19, .
Atmospheric CO2 uptake by a coastal upwelling system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlaht7o%3D&md5=f8ce7b2b558d74e6184727aa325e077aCAS |

Heck, K. L., Pennock, J. R., Valentine, J. F., Coen, L. D., and Sklenar, S. A. (2000). Effects of nutrient enrichment and small predator density on seagrass ecosystems: an experimental assessment. Limnology and Oceanography 45, 1041–1057.
Effects of nutrient enrichment and small predator density on seagrass ecosystems: an experimental assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvFCrtro%3D&md5=99bfc041ecb22aa4a3f781023b025a93CAS |

Heck, K. L., Hays, G., and Orth, R. J. (2003). Critical evaluation of the nursey role hypothesis for seagrass meadows. Marine Ecology Progress Series 253, 123–136.
Critical evaluation of the nursey role hypothesis for seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Hendriks, I. E., Duarte, C. E., and Álvarez, M. (2010). Vulnerability of marine biodiversity to ocean acidification: a meta-analysis. Estuarine, Coastal and Shelf Science 86, 157–164.
Vulnerability of marine biodiversity to ocean acidification: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1aqtbvM&md5=46fde8894a127e160f4b10f053c4c2e8CAS |

Hofmann, G. E., Barry, J. P., Edmunds, P. J., Gates, R. D., Hutchins, D. A., Klinger, T., and Sewell, M. A. (2010). The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annual Review of Ecology Evolution and Systematics 41, 127–147.
The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective.Crossref | GoogleScholarGoogle Scholar |

Hofmann, G.E., Smith, J.E., Johnson, K.S., Send, U., Levin, L.A., Micheli, F., Paytan, A., Price, N.N., Peterson, B., Takeshita, Y., Matson, P.G., Crook, E.D., Kroeker, K.J., Gambi, M.C., Rivest, E.B., Frieder, C.A., Yu, P.C., and Martz, T. R. (2011). High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, .
High-frequency dynamics of ocean pH: a multi-ecosystem comparison.Crossref | GoogleScholarGoogle Scholar | 22205986PubMed |

Invers, O., Romero, J., and Pérez, M. (1997). Effects of pH on seagrass photosynthesis: a laboratory and field assessment. Aquatic Botany 59, 185–194.
Effects of pH on seagrass photosynthesis: a laboratory and field assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFCgsg%3D%3D&md5=381465d4effb12ece596b5c60c1a8827CAS |

IPCC (2007). ‘Intergovernmental Panel on Climate Change: Climate Change 2007: The Physical Science Basis – Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: Cambridge, UK).

Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G. (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13, 1419–1434.
Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms.Crossref | GoogleScholarGoogle Scholar | 20958904PubMed |

Lee, K., Kim, T.-W., Byrne, R. H., Millero, F. J., Feely, R. a., and Liu, Y.-M. (2010). The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochimica et Cosmochimica Acta 74, 1801–1811.
The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhvFaltbc%3D&md5=71b8c684ba76ce39276e0520b68cd67aCAS |

Lewis, E., and Wallace, D. W. R. (1998). Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.

Marbà, N., Holmer, M., Gacia, E., and Barrón, C. (2006). Seagrass beds and coastal biogeochemistry. In ‘Seagrasses: Biology, Ecology and Conservation’. (Eds W. D. Larkum, R. J. Orth, and C. M. Duarte.) pp. 135–157. (Springer: Dordrecht, the Netherlands).

Mateo, M. A., and Romero, J. (1997). Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Marine Ecology Progress Series 151, 43–53.
Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtF2qtr8%3D&md5=1bdb2633b59404878e2d7b169beccf82CAS |

McElhany, P., and Busch, S. D. (2013). Appropriate pCO2 treatments in ocean acidification experiments. Marine Biology 160, 1807–1812.
Appropriate pCO2 treatments in ocean acidification experiments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgtbzP&md5=3874241c5ac15635a82379c0f7f93ec3CAS |

Middelboe, A. L., and Hansen, P. J. (2007). High pH in shallow-water macroalgal habitats. Marine Ecology Progress Series 338, 107–117.
High pH in shallow-water macroalgal habitats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Sgt70%3D&md5=bd6ca86ed3258deef8e506c8023da84bCAS |

Millero, F. J., Hiscock, W. T., Huang, F., Roche, M., and Zhang, J. Z. (2001). Seasonal variation of the carbonate system in Florida Bay. Bulletin of Marine Science 68, 101–123.

Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., and Pierrot, D. (2006). Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Marine Chemistry 100, 80–94.
Dissociation constants of carbonic acid in seawater as a function of salinity and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsFegsLk%3D&md5=253ac4b32aec31f7f795640aeefc4482CAS |

Ohde, S., and van Woesik, R. (1999). Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bulletin of Marine Science 65, 559–576.

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M. F., Yamanaka, Y., and Yool, A. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686.
Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsL%2FE&md5=8dac831b674316b69dde821d4e9bf4a8CAS | 16193043PubMed |

Pelletier, G., Lewis, E., and Wallace, D. W. R. (2007). CO2SYS.XLS. A calculator for the CO2 system in seawater for Microsoft Excel/MBA. Washington State Department of Ecology, Olympia, Washington, and Brookhaven National Laboratory, Upton, NY.

Price, N. N., Martz, T. R., Brainard, R. E., and Smith, J. E. (2012). Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS ONE 7, e43843.
Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yktLbJ&md5=61443f6b24a8ebac58b2930be1003935CAS | 22952785PubMed |

Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J.-P. (Eds) (2010). ‘Guide to Best Practices for Ocean Acidification Research and Data Reporting.’ (Publications Office of the European Union: Luxembourg.)

Robbins, L. L., Hansen, M. E., Kleypas, J. A., and Meylan, S. C. (2010). CO2calc – a user-friendly seawater carbon calculator for Windows, Max OSX, and iOS (iPhone). US Geological Survey Open-File Report 2010–1280 (version 1.2.9).

Semesi, I. S., Beer, S., and Björk, M. (2009). Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series 382, 41–47.
Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFaisrg%3D&md5=8a153f85213e41f4eeefb168e96f0dd5CAS |

Shaw, E. C., Munday, P. L., and McNeil, B. I. (2013). The role of CO2 variability and exposure time for biological impacts of ocean acidification. Geophysical Research Letters 40, 4685–4688.
The role of CO2 variability and exposure time for biological impacts of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFynsb3J&md5=e5c3ec4914afee8053bdd6621e4b2a2fCAS |

Suzuki, A., and Kawahata, H. (2003). Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions. Tellus. Series B, Chemical and Physical Meteorology 55, 428–444.
Carbon budget of coral reef systems: an overview of observations in fringing reefs, barrier reefs and atolls in the Indo-Pacific regions.Crossref | GoogleScholarGoogle Scholar |

Unsworth, R. K. F., Collier, C. J., Henderson, G. M., and McKenzie, L. J. (2012). Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters 7, 024026.
Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification.Crossref | GoogleScholarGoogle Scholar |

Valentine, J. F., and Heck, K. L. (1993). Mussels in seagrass meadows: their influence on macroinvertebrate abundance and secondary production in the northern Gulf of Mexico. Marine Ecology Progress Series 96, 63–74.
Mussels in seagrass meadows: their influence on macroinvertebrate abundance and secondary production in the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Van Tussenbroek, B. I., Vonk, J. A., Stapel, J., Erftemeijer, P. L. A., Middelburg, J. J., and Zieman, J. C. (2006). The biology of Thalassia: paradigms and recent advances in research. In ‘Seagrasses: Biology, Ecology and Conservation’. (Eds W. D. Larkum, R. J. Orth, and C. M. Duarte.) pp. 409–439. (Springer: Dordrecht, the Netherlands.)

Wahl, M., Sawall, Y., and Saderne, V. (in press). How good are we at assessing the impact of ocean acidification in coastal systems? Limitations, omissions and strengths of commonly used experimental approaches with a special emphasis on the neglected role of fluctuations. Marine and Freshwater Research , .
How good are we at assessing the impact of ocean acidification in coastal systems? Limitations, omissions and strengths of commonly used experimental approaches with a special emphasis on the neglected role of fluctuations.Crossref | GoogleScholarGoogle Scholar |

Waldbusser, G. G., and Salisbury, J. E. (2014). Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6, 221–247.
Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats.Crossref | GoogleScholarGoogle Scholar | 23987912PubMed |

Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A., and Dickson, A. G. (2007). Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Marine Chemistry 106, 287–300.
Total alkalinity: the explicit conservative expression and its application to biogeochemical processes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSmurc%3D&md5=592830d17db1a6af02db24da5cba0969CAS |

Wootton, J. T., Pfister, C. A., and Forester, J. D. (2008). Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences of the United States of America 105, 18848–18853.
Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2rtL3M&md5=2f8311fdad878c6620bfbb2942f47fc5CAS | 19033205PubMed |

Yates, K. K., Dufore, C., Smiley, N., Jackson, C., and Halley, R. B. (2007). Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Marine Chemistry 104, 110–124.
Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFSmtrc%3D&md5=312b1efe3113d472bffde3fe5e61a5e3CAS |