Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

How good are we at assessing the impact of ocean acidification in coastal systems? Limitations, omissions and strengths of commonly used experimental approaches with special emphasis on the neglected role of fluctuations

M. Wahl A B , V. Saderne A and Y. Sawall A
+ Author Affiliations
- Author Affiliations

A Geomar Helmholtz Centre for Ocean Research, Duesternbrookerweg 20, D-24105 Kiel, Germany.

B Corresponding author. Email: mwahl@geomar.de

Marine and Freshwater Research 67(1) 25-36 https://doi.org/10.1071/MF14154
Submitted: 13 June 2014  Accepted: 19 November 2014   Published: 17 June 2015

Abstract

Much of our past research on ocean acidification has focussed on direct responses to pCO2 increase at the (sub-) organism level, but does not produce findings that can be projected into the natural context. On the basis of a review of ~350 recent articles mainly on ocean acidification effects, we highlight major limitations of commonly used experimental approaches. Thus, the most common type of investigation, simplified and tightly controlled laboratory experiments, has yielded a wealth of findings on short-term physiological responses to acidification, but any extrapolation to the natural ecosystem level is still problematic. For this purpose, an upscaling is required regarding the number of stressors, of ontogenetic stages, of species, of populations, of generations as well as the incorporation of fluctuating intensities of stress. Because the last aspect seems to be the least recognised, we treat in more detail the natural fluctuations of the carbonate system at different temporal and spatial scales. We report on the very rare investigations that have assessed the biological relevance of natural pH or pCO2 fluctuations. We conclude by pleading the case for more natural research approaches that integrate several organisational levels on the response side, several drivers, biological interactions and environmental fluctuations at various scales.

Additional keywords: amplitudes at different scales, boundary layers, coastal habitats, fluctuations v. constant regimes, global change.


References

Anthony, K. R. N., Diaz-Pulido, G., Verlinden, N., Tilbrook, B., and Andersson, A. J. (2013). Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences Discussions 10, 1831–1865.
Benthic buffers and boosters of ocean acidification on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Appelhans, Y. S., Thomsen, J., Pansch, C., Melzner, F., and Wahl, M. (2012). Sour times: seawater acidification effects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas. Marine Ecology Progress Series 459, 85–98.
Sour times: seawater acidification effects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFertr3F&md5=1a521c07b1eea62f2fd92ecd392bfd73CAS |

Appelhans, J. S., Thomsen, J., Opitz, S., Pansch, C., Melzner, F., and Wahl, M. (2014). Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential. Marine Ecology Progress Series 509, 227–239.
Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFWltr%2FL&md5=3dbffc3f898e5de54a647429da837c43CAS |

Bates, N. R., and Leone, S. (2001). Biogeochemical and physical factors influencing seawater fCO2 and air–sea CO2 exchange on the Bermuda coral reef. Limnology and Oceanography 46, 833–846.
Biogeochemical and physical factors influencing seawater fCO2 and air–sea CO2 exchange on the Bermuda coral reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXkvFeksr0%3D&md5=b67b03391509363264efbec1cf13a32bCAS |

Buapet, P., Gullström, M., and Björk, M. (2013). Photosynthetic activity of seagrasses and macroalgae in temperate shallow waters can alter seawater pH and total inorganic carbon content at the scale of a coastal embayment. Marine and Freshwater Research 64, 1040–1048.
Photosynthetic activity of seagrasses and macroalgae in temperate shallow waters can alter seawater pH and total inorganic carbon content at the scale of a coastal embayment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ygsb7F&md5=4f3dea97d6837afb70722cab403143c7CAS |

Byrne, M., and Przeslawski, R. (2013). Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories. Integrative and Comparative Biology 53, 582–596.
Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFegsrjP&md5=3257dc74cb2755a2ec0fffd7601e812dCAS | 23697893PubMed |

Comeau, S., Edmunds, P. J., Spindel, N. B., and Carpenter, R. C. (2014). Diel pCO2 oscillations modulate the response of the coral Acropora hyacinthus to ocean acidification. Marine Ecology Progress Series 501, 99–111.
Diel pCO2 oscillations modulate the response of the coral Acropora hyacinthus to ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtV2jsb3J&md5=09a152464c5e12fc923375881e8bab5bCAS |

Connell, S. D., and Russell, B. D. (2010). The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proceedings of the Royal Society of London – B. Biological Sciences 277, 1409–1415.
The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests.Crossref | GoogleScholarGoogle Scholar |

Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I., and Russell, B. D. (2013). The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 368, 20120442.
The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance.Crossref | GoogleScholarGoogle Scholar |

Cornwall, C. E., Hepburn, C. D., Pilditch, C. A., and Hurd, C. L. (2013). Concentration boundary layers around complex assemblages of macroalgae: implications for the effects of ocean acidification on understory coralline algae. Limnology and Oceanography 58, 121–130.
Concentration boundary layers around complex assemblages of macroalgae: implications for the effects of ocean acidification on understory coralline algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlGltLw%3D&md5=5235f566f7bf1d3dd2195f98883d3867CAS |

Cornwall, C. E., Boyd, P. W., McGraw, C. M., Hepburn, C. D., Pilditch, C. A., Morris, J. N., Smith, A. M., and Hurd, C. L. (2014). Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9, e97235.
Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa.Crossref | GoogleScholarGoogle Scholar | 24824089PubMed |

Daniel, M. J., and Boyden, C. R. (1975). Diurnal variations in physico-chemical conditions within intertidal rockpools. Field Studies 4, 161–176.

Delille, B., Delille, D., Fiala, M., Prevost, C., and Frankignoulle, M. (2000). Seasonal changes of pCO2 over a subantarctic Macrocystis kelp bed. Polar Biology 23, 706–716.
Seasonal changes of pCO2 over a subantarctic Macrocystis kelp bed.Crossref | GoogleScholarGoogle Scholar |

Delille, B., Borges, A. V., and Delille, D. (2009). Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuarine, Coastal and Shelf Science 81, 114–122.
Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area.Crossref | GoogleScholarGoogle Scholar |

Drupp, P., De Carlo, E., Mackenzie, F., Bienfang, P., and Sabine, C. (2011). Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii. Aquatic Geochemistry 17, 473–498.
Nutrient inputs, phytoplankton response, and CO2 variations in a semi-enclosed subtropical embayment, Kaneohe Bay, Hawaii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtV2msr%2FJ&md5=d22466fa2ca1793db44d921ef3d52476CAS |

Drupp, P. S., De Carlo, E. H., Mackenzie, F. T., Sabine, C. L., Feely, R. A., and Shamberger, K. E. (2013). Comparison of CO2 dynamics and air–sea gas exchange in differing tropical reef environments. Aquatic Geochemistry 19, 371–397.
Comparison of CO2 dynamics and air–sea gas exchange in differing tropical reef environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFCitbs%3D&md5=0b17ff40b4e4d6b462b2f42fbd2dea26CAS |

Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., and McCulloch, M. (2013). Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts 36, 221–236.
Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVKmu74%3D&md5=4ec80fea4fd5580e93b02b8017ccfc3aCAS |

Duarte, C., Navarro, J., Acuna, K., Torres, R., Manriquez, P., Lardies, M., Vargas, C., Lagos, N., and Aguilera, V. (2014). Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. Journal of Sea Research 85, 308–314.
Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis.Crossref | GoogleScholarGoogle Scholar |

Dufault, A. M., Cumbo, V. R., Fan, T.-Y., and Edmunds, P. J. (2012). Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proceedings. Biological Sciences 279, 2951–2958.
Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlehtLjO&md5=77ee203b54fd8604954e6c6f881976dcCAS |

Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D., and Hales, B. (2008). Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf. Science 320, 1490–1492.
Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntVWru7s%3D&md5=37c89cbb18206107954d825e6f7cebd8CAS | 18497259PubMed |

Forsgren, E., Dupont, S., Jutfelt, F., and Amundsen, T. (2013). Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecology and Evolution 3, 3637–3646.
Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish.Crossref | GoogleScholarGoogle Scholar | 24198929PubMed |

Frankignoulle, M. (1988). Field measurements of air–sea CO2 exchange. Limnology and Oceanography 33, 313–322.
Field measurements of air–sea CO2 exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvFygt70%3D&md5=c1c26a23c4397d7b580bfa5f78f766d3CAS |

Frankignoulle, M., and Bouquegneau, J. M. (1990). Daily and yearly variations of total inorganic carbon in a productive coastal area. Estuarine, Coastal and Shelf Science 30, 79–89.
Daily and yearly variations of total inorganic carbon in a productive coastal area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlsFyiur4%3D&md5=8c98b90580d28ac44af11253c180765cCAS |

Frankignoulle, M., and Distèche, A. (1984). CO2 chemistry in the water column above a Posidonia seagrass bed and related air–sea exchanges. Oceanologica Acta 7, 209–219.
| 1:CAS:528:DyaL2MXhsFCgtL4%3D&md5=f72d2e0e5c2f03c244e6eed82f42c5b6CAS |

Frieder, C. A., Nam, S. H., Martz, T. R., and Levin, L. A. (2012). High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930.
High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1Gku74%3D&md5=fcbbe4b0ad4a3aafe049dd16cd117dc9CAS |

Frieder, C. A., Gonzalez, J. P., Bockmon, E. E., Navarro, M. O., and Levin, L. A. (2014). Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae? Global Change Biology 20, 754–764.
Can variable pH and low oxygen moderate ocean acidification outcomes for mussel larvae?Crossref | GoogleScholarGoogle Scholar | 24343909PubMed |

Gattuso, J.-P., Kirkwood, W., Barry, J. P., Cox, E., Gazeau, F., Hansson, L., Hendriks, I., Kline, D. I., Mahacek, P., Martin, S., McElhany, P., Peltzer, E. T., Reeve, J., Roberts, D., Saderne, V., Tait, K., Widdicombe, S., and Brewer, P. G. (2014). Free-ocean CO2 enrichment (FOCE) systems: present status and future developments Biogeosciences 11, 4057–4075.
Free-ocean CO2 enrichment (FOCE) systems: present status and future developmentsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSksLjI&md5=ad580d9c50821217c3521c3b57228b5fCAS |

Gray, S. E. C., DeGrandpre, M. D., Langdon, C., and Corredor, J. E. (2012). Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem. Global Biogeochemical Cycles 26, GB3012.
Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem.Crossref | GoogleScholarGoogle Scholar |

Griffin, N., and Durako, M. (2012). The effect of pulsed versus gradual salinity reduction on the physiology and survival of Halophila johnsonii Eiseman. Marine Biology 159, 1439–1447.
The effect of pulsed versus gradual salinity reduction on the physiology and survival of Halophila johnsonii Eiseman.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGjsr4%3D&md5=d50a69408534ec0f1da5fa59dcf4b2e3CAS |

Hadfield, M. G., and Strathmann, M. F. (1996). Variability, flexibility and plasticity in life histories of marine invertebrates. Oceanologica Acta 19, 323–334.

Helbling, E. W., Carrillo, P., Medina-Sanchez, J. M., Duran, C., Herrera, G., Villar-Argaiz, M., and Villafane, V. E. (2013). Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in southern Europe. Biogeosciences 10, 1037–1050.
Interactive effects of vertical mixing, nutrients and ultraviolet radiation: in situ photosynthetic responses of phytoplankton from high mountain lakes in southern Europe.Crossref | GoogleScholarGoogle Scholar |

Hendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore, T. S., Howard, J., and Duarte, C. M. (2014). Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11, 333–346.
Photosynthetic activity buffers ocean acidification in seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Hiebenthal, C., Philipp, E., Eisenhauer, A., and Wahl, M. (2013). Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Marine Biology 160, 2073–2087.
Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgtrvM&md5=6773f768d05467f02b048bb13a8b734aCAS |

Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R. (2011). High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983.
High-frequency dynamics of ocean pH: a multi-ecosystem comparison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvFSnuw%3D%3D&md5=1758d58328579eff891299102cd9e7a7CAS | 22205986PubMed |

Hurd, C. L. (2000). Water motion, marine macroalgal physiology, and production. Journal of Phycology 36, 453–472.
Water motion, marine macroalgal physiology, and production.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslars7o%3D&md5=a677190abec19a3a95ad965e10a5975dCAS |

Hurd, C. L., and Pilditch, C. A. (2011). Flow-induced morphological variations affect diffusion boundary-layer thickness of Macrocystis pyrifera (Heterokontophyta, Laminariales). Journal of Phycology 47, 341–351.
Flow-induced morphological variations affect diffusion boundary-layer thickness of Macrocystis pyrifera (Heterokontophyta, Laminariales).Crossref | GoogleScholarGoogle Scholar |

Hurd, C. L., Hepburn, C. D., Currie, K. I., Raven, J. A., and Hunter, K. A. (2009). Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs. Journal of Phycology 45, 1236–1251.
Testing the effects of ocean acidification on algal metabolism: considerations for experimental designs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVSisb8%3D&md5=9e1a888329ffcbfa9e6a7ab4531701c9CAS |

Johnson, V. R., Brownlee, C., Rickaby, R. E. M., Graziano, M., Milazzo, M., and Hall-Spencer, J. M. (2013). Responses of marine benthic microalgae to elevated CO2. Marine Biology 160, 1813–1824.
Responses of marine benthic microalgae to elevated CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1Ggs7jL&md5=1840c98f3a3ec3f205b60e27ea863f33CAS |

Kim, T. W., Barry, J. P., and Micheli, F. (2013). The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10, 7255–7262.
The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone.Crossref | GoogleScholarGoogle Scholar |

Koch, M., Bowes, G., Ross, C., and Zhang, X.-H. (2013). Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology 19, 103–132.
Climate change and ocean acidification effects on seagrasses and marine macroalgae.Crossref | GoogleScholarGoogle Scholar | 23504724PubMed |

Kuliński, K., Schneider, B., Hammer, K., Machulik, U., and Schulz-Bull, D. (2014). The influence of dissolved organic matter on the acid–base system of the Baltic Sea. Journal of Marine Systems 132, 106–115.
The influence of dissolved organic matter on the acid–base system of the Baltic Sea.Crossref | GoogleScholarGoogle Scholar |

Kurihara, H., Yin, R., Nishihara, G., Soyano, K., and Ishimatsu, A. (2013). Effect of ocean acidification on growth, gonad development and physiology of the sea urchin Hemicentrotus pulcherrimus. Aquatic Biology 18, 281–292.
Effect of ocean acidification on growth, gonad development and physiology of the sea urchin Hemicentrotus pulcherrimus.Crossref | GoogleScholarGoogle Scholar |

Lohbeck, K., Riebesell, U., Collins, S., and Reusch, T. (2013). Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations. Evolution 67, 1892–1900.
Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations.Crossref | GoogleScholarGoogle Scholar | 23815647PubMed |

Low-Décarie, E., Fussmann, G., and Bell, G. (2011). The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Global Change Biology 17, 2525–2535.
The effect of elevated CO2 on growth and competition in experimental phytoplankton communities.Crossref | GoogleScholarGoogle Scholar |

Manzello, D. P. (2010). Ocean acidification hot spots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnology and Oceanography 55, 239–248.
Ocean acidification hot spots: spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSgtb0%3D&md5=2841ae9e29cdb5f145c37229b070f8eeCAS |

Massaro, R. S., De Carlo, E., Drupp, P., Mackenzie, F., Jones, S., Shamberger, K., Sabine, C., and Feely, R. (2012). Multiple factors driving variability of CO2 exchange between the ocean and atmosphere in a tropical coral reef environment. Aquatic Geochemistry 18, 357–386.
Multiple factors driving variability of CO2 exchange between the ocean and atmosphere in a tropical coral reef environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12js74%3D&md5=0434ce4611f0e3cd33b90ee4a6d5ccceCAS |

McCoy, S. (2013). Morphology of the crustose coralline alga Pseudolithophyllum muricatum (Corallinales, Rhodophyta) responds to 30 years of ocean acidification in the northeast Pacific. Journal of Phycology 49, 830–837.
| 1:CAS:528:DC%2BC3sXhs1SlsL3L&md5=e516c13fbda11c0d6e5df9b2504c6dcdCAS |

Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W., Hansen, H. P., and Kortzinger, A. (2013). Future ocean acidification will be amplified by hypoxia in coastal habitats. Marine Biology 160, 1875–1888.
Future ocean acidification will be amplified by hypoxia in coastal habitats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgsbbK&md5=f3c2d5b54056053339b40c5afe67290fCAS |

Middelboe, A. L., and Hansen, P. J. (2007). High pH in shallow-water macroalgal habitats. Marine Ecology Progress Series 338, 107–117.
High pH in shallow-water macroalgal habitats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1Sgt70%3D&md5=bd6ca86ed3258deef8e506c8023da84bCAS |

Miller, G., Watson, S., Donelson, J., McCormick, M., and Munday, P. (2012). Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Climate Change 2, 858–861.
Parental environment mediates impacts of increased carbon dioxide on a coral reef fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslahtrzN&md5=2784b27c074c572899f918b8527ec6b3CAS |

Miller-Neilan, R., and Rose, K. (2014). Simulating the effects of fluctuating dissolved oxygen on growth, reproduction, and survival of fish and shrimp. Journal of Theoretical Biology 343, 54–68.
Simulating the effects of fluctuating dissolved oxygen on growth, reproduction, and survival of fish and shrimp.Crossref | GoogleScholarGoogle Scholar | 24269807PubMed |

Morris, S., and Taylor, A. C. (1983). Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools. Estuarine, Coastal and Shelf Science 17, 339–355.
Diurnal and seasonal variation in physico-chemical conditions within intertidal rock pools.Crossref | GoogleScholarGoogle Scholar |

Nguyen, H. D., and Byrne, M. (2014). Early benthic juvenile Parvulastra exigua (Asteroidea) are tolerant to extreme acidification and warming in its intertidal habitat. Journal of Experimental Marine Biology and Ecology 453, 36–42.
Early benthic juvenile Parvulastra exigua (Asteroidea) are tolerant to extreme acidification and warming in its intertidal habitat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjvFWis78%3D&md5=bbc0f6ba747cfa7c5527a8d07269009dCAS |

Ohde, S., and van Woesik, R. (1999). Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bulletin of Marine Science 65, 559–576.

Pansch, C., Nasrolahi, A., Appelhans, J. S., and Wahl, M. (2012). Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvises. Journal of Experimental Marine Biology and Ecology 420–421, 48–55.
Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvises.Crossref | GoogleScholarGoogle Scholar |

Pansch, C., Schaub, I., Havenhand, J., and Wahl, M. (2014). Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Global Change Biology 20, 765–777.
Habitat traits and food availability determine the response of marine invertebrates to ocean acidification.Crossref | GoogleScholarGoogle Scholar | 24273082PubMed |

Price, N. N., Martz, T. R., Brainard, R. E., and Smith, J. E. (2012). Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs. PLoS ONE 7, e43843.
Diel variability in seawater pH relates to calcification and benthic community structure on coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yktLbJ&md5=61443f6b24a8ebac58b2930be1003935CAS | 22952785PubMed |

Putnam, H. M., and Edmunds, P. J. (2011). The physiological response of reef corals to diel fluctuations in seawater temperature. Journal of Experimental Marine Biology and Ecology 396, 216–223.
The physiological response of reef corals to diel fluctuations in seawater temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFynurjE&md5=cb2d049affdf80e56c751640f59c13e5CAS |

Saderne, V., and Wahl, M. (2013). Differential responses of calcifying and non-calcifying epibionts of a brown macroalga to present-day and future upwelling pCO2. PLoS ONE 8, e70455.
Differential responses of calcifying and non-calcifying epibionts of a brown macroalga to present-day and future upwelling pCO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1ersb7F&md5=7925a1f02f65381366632355b4bf0aecCAS | 23894659PubMed |

Saderne, V., Fietzek, P., and Herman, P. M. J. (2013). Extreme variations of pCO2 and pH in a macrophyte meadow of the baltic sea in summer: evidence of the effect of photosynthesis and local upwelling. PLoS ONE 8, e62689.
Extreme variations of pCO2 and pH in a macrophyte meadow of the baltic sea in summer: evidence of the effect of photosynthesis and local upwelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVOjsLo%3D&md5=4582f5afc74fdf2accc2f45039f3231fCAS | 23626849PubMed |

Schulz, K. G., and Riebesell, U. (2013). Diurnal changes in seawater carbonate chemistry speciation at increasing atmospheric carbon dioxide. Marine Biology 160, 1889–1899.
Diurnal changes in seawater carbonate chemistry speciation at increasing atmospheric carbon dioxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1GgtbbK&md5=e44c2a9b4efb50c346f6d0d93ff73ab6CAS | 24391286PubMed |

Semesi, I. S., Beer, S., and Björk, M. (2009). Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series 382, 41–48.
Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFaisrg%3D&md5=8a153f85213e41f4eeefb168e96f0dd5CAS |

Shashar, N., Kinane, S., Jokiel, P. L., and Patterson, M. R. (1996). Hydromechanical boundary layers over a coral reef. Journal of Experimental Marine Biology and Ecology 199, 17–28.
Hydromechanical boundary layers over a coral reef.Crossref | GoogleScholarGoogle Scholar |

Shaw, E. C., McNeil, B. I., and Tilbrook, B. (2012). Impacts of ocean acidification in naturally variable coral reef flat ecosystems. Journal of Geophysical Research: Oceans 117, C03038.
Impacts of ocean acidification in naturally variable coral reef flat ecosystems.Crossref | GoogleScholarGoogle Scholar |

Soares, H. C., Marcolino Gherardi, D. F., Pezzi, L. P., Kayano, M. T., and Paes, E. T. (2014). Patterns of interannual climate variability in large marine ecosystems. Journal of Marine Systems 134, 57–68.
Patterns of interannual climate variability in large marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Spilling, K., Titelman, J., Greve, T. M., and Kühl, M. (2010). Microsensor measurements of the external and internal microenvironment of Fucus vesiculosus (Phaeophyceae). Journal of Phycology 46, 1350–1355.
Microsensor measurements of the external and internal microenvironment of Fucus vesiculosus (Phaeophyceae).Crossref | GoogleScholarGoogle Scholar |

Stewart, R. I. A., Dossena, M., Bohan, D. A., Jeppesen, E., Kordas, R. L., Ledger, M. E., Meerhoff, M., Moss, B., Mulder, C., Shurin, J. B., Suttle, B., Thompson, R., Trimmer, M., and Woodward, G. (2013). Mesocosm experiments as a tool for ecological climate-change research. Advances in Ecological Research 48, 71–181.
Mesocosm experiments as a tool for ecological climate-change research.Crossref | GoogleScholarGoogle Scholar |

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds) (2013). Summary for Policymakers. In ‘Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change’. pp. 3–29. (Cambridge University Press: Cambridge, UK, and New York.)

Thomsen, J., Gutowska, M. A., Saphoerster, J., Heinemann, A., Truebenbach, K., Fietzke, J., Hiebenthal, C., Eisenhauer, A., Koertzinger, A., Wahl, M., and Melzner, F. (2010). Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7, 3879–3891.
Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntlKktLw%3D&md5=400a5e1a8f0bdb2f80658e4d5f8c03a6CAS |

Truchot, J. P., and Duhamel-Jouve, A. (1980). Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools. Respiration Physiology 39, 241–254.
Oxygen and carbon dioxide in the marine intertidal environment: diurnal and tidal changes in rockpools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXksl2ls7c%3D&md5=ec6a10185fae44c45aaa6c52ff1ce473CAS | 6770427PubMed |

Vasseur, D. A., DeLong, J. P., Gilbert, B., Greig, H. S., Harley, C. D. G., McCann, K. S., Savage, V., Tunney, T. D., and O’Connor, M. I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences 281, .
Increased temperature variation poses a greater risk to species than climate warming.Crossref | GoogleScholarGoogle Scholar | 24966312PubMed |

Wahl, M., Jormalainen, V., Eriksson, B. K., Coyer, J. A., Molis, M., Schubert, H., Dethier, M., Karez, R., Kruse, I., Lenz, M., Pearson, G., Rohde, S., Wikstrom, S. A., and Olsen, J. L. (2011). Stress ecology in Fucus: abiotic, biotic and genetic interactions. In ‘Advances in Marine Biology’. (Ed. M. Lesser.) Vol 59, Book 59. (Academic Press: Oxford, UK.)

Waldbusser, G. G., and Salisbury, J. E. (2014). Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6, 221–247.
Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats.Crossref | GoogleScholarGoogle Scholar | 23987912PubMed |

Wootton, J. T., Pfister, C. A., and Forester, J. D. (2008). Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences of the United States of America 105, 18848–18853.
Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsV2rtL3M&md5=2f8311fdad878c6620bfbb2942f47fc5CAS | 19033205PubMed |

Yates, K. K., Dufore, C., Smiley, N., Jackson, C., and Halley, R. B. (2007). Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay. Marine Chemistry 104, 110–124.
Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitFSmtrc%3D&md5=312b1efe3113d472bffde3fe5e61a5e3CAS |