Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Diel, seasonal and man-induced changes in copepod assemblages and diversity, with special emphasis on hyperbenthic calanoid species, in a Mediterranean meromictic system (Lake Faro)

G. Zagami A and C. Brugnano A B
+ Author Affiliations
- Author Affiliations

A Department of Biological and Environmental Sciences, Messina University, Viale Ferdinando Stagno d’Alcontres, 31 Sant' Agata, Messina 98166, Italy.

B Corresponding author. Email: cinzia.brugnano@unime.it

Marine and Freshwater Research 64(10) 951-964 https://doi.org/10.1071/MF12344
Submitted: 4 December 2012  Accepted: 12 April 2013   Published: 21 June 2013

Abstract

The present study focuses on variations in day and night copepod community structure in a meromictic Mediterranean ecosystem (Lake Faro). Because of the high salinity in the lake, this environment is defined as a coastal-marine rather than true-lagoon ecosystem. Copepod abundances showed wide oscillations, with marked spatial and seasonal heterogeneity. The copepod assemblage was dominated by coastal and estuarine species Paracartia latisetosa and Acartia margalefi, in late summer–autumn and spring, respectively. A remarkable change in species composition was the occurrence of the alien species Oithona brevicornis, never having been reported in this environment before. O. brevicornis is progressively replacing the congener species O. nana. The discovery of the hyperbenthic calanoid species ‘ecological group’ contributes to increased functional diversity of this ecosystem, despite their relatively low abundances. All six hyperbenthic calanoid species occurred in the plankton community only at night, with spatial distribution patterns being related to substrate more than water physico-chemical parameters. Among all hyperbenthic calanoid species, Pseudocyclops xiphophorus was the only one able to inhabit the whole lake because of its daytime habitat (fouling material, attached to submerged ropes and mooring posts, widely distributed all around the lake). In this habitat, the temporal abundance pattern resembled the night-time one in plankton community.

Additional keywords: hyperbenthic calanoid copepods, Lake Faro, night–daytime biodiversity variations, plankton copepod community, spatio-temporal distribution.


References

Acosta Pomar, M. L. C., Bruni, V., Decembrini, F., Giuffrè, G., and Maugeri, T. L. (1989). Distribution and activity of picophytoplankton in a brackish environment. Progress in Oceanography 21, 221–224.

Aguiaro, T., and Caramaschi, E. P. (1995). Icthyofauna composition of three coastal lagoons in the North of the State of Rio de Janeiro. Brazilian Archives of Biology and Tecnology 38, 1181–1189.

Alcaraz, M. (1983). Coexistence and segregation of congeneric pelagic copepods: spatial distribution of the Acartia complex in the rìa of Vigo (NW Spain). Journal of Plankton Research 5, 891–900.
Coexistence and segregation of congeneric pelagic copepods: spatial distribution of the Acartia complex in the rìa of Vigo (NW Spain).Crossref | GoogleScholarGoogle Scholar |

Alldredge, A. L., and King, J. M. (1985). The distance demersal zooplankton migrate above the benthos: implication for predation. Marine Biology Berlin 84, 253–260.
The distance demersal zooplankton migrate above the benthos: implication for predation.Crossref | GoogleScholarGoogle Scholar |

Almeida, L. R., Costa, I. S., and Eskinazi-Sant’Anna, E. M. (2012). Composition and abundance of zooplankton community of an impacted estuarine lagoon in Northeast Brazil. Brazilian Journal of Biology 72, 13–24.
Composition and abundance of zooplankton community of an impacted estuarine lagoon in Northeast Brazil.Crossref | GoogleScholarGoogle Scholar |

Andronov, V. N. (1986). Bottom Copepoda in the area of Cape Blanc (Islamic Republic of Mauritania). The family Pseudocyclopidae. Зоологический журнал 65, 456–462.

Antacli, J. C., Hernández, D., and Sabatini, M. E. (2010). Estimating copepods’ abundance with paired nets: implications of mesh size for population studies. Journal of Sea Research 63, 71–77.
Estimating copepods’ abundance with paired nets: implications of mesh size for population studies.Crossref | GoogleScholarGoogle Scholar |

Ayala-Castañares, A., and Phleger, F. B. (1969). ‘Coastal Lagoons: a Symposium.’ (Universidad Nacional Autónoma de México: México. Mexico City)

Barnes, R. S. K. (1980). ‘Coastal Lagoons.’ (Cambridge University Press: Cambridge, UK.)

Barquero, S., Cabal, J. A., Anadón, R., Fernández, E., Varela, M., and Bode, A. (1998). Ingestion rates of phytoplankton by copepod size fractions on a bloom associated with an off-shelf front off NW Spain. Journal of Plankton Research 20, 957–972.
Ingestion rates of phytoplankton by copepod size fractions on a bloom associated with an off-shelf front off NW Spain.Crossref | GoogleScholarGoogle Scholar |

Belmonte, G., and Potenza, L. (2001). Biogeography of the family Acartiidae (Calanopida) in the Ponto-Mediterranean Province. Hydrobiologia 453/454, 171–176.
Biogeography of the family Acartiidae (Calanopida) in the Ponto-Mediterranean Province.Crossref | GoogleScholarGoogle Scholar |

Bergamasco, A., Azzaro, M., Pulicanò, G., Cortese, G., Sanfilippo, M., and Maugeri, T. (2005). Ganzirri Lake, north-eastern Sicily. In ‘Nutrient Fluxes in Transitional Zones of the Italian Coasts’. (Eds G. Giordani, P. Viaroli, D. P. Swaney, C. N. Murray, J. M. Zaldívar, J. I. Marshall Crossland.) pp. 103–110. LOICZ Reports and Studies, N.28. (LOICZ IPO: Texel, The Netherlands.)

Bradford-Grieve, J. M. (2004). Deep-sea benthopelagic calanoid copepods and their colonization of near-bottom environment. Zoological Studies 43, 276–291.

Branco, C. W. C., Kozlowsky-Suzuki, B., and Esteves, F. A. (2007). Environmental changes and zooplankton temporal and spatial distribution in a disturbed Brazilian coastal lagoon. Brazilian Journal of Biology 67, 251–262.
Environmental changes and zooplankton temporal and spatial distribution in a disturbed Brazilian coastal lagoon.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2srlvVChsg%3D%3D&md5=2a3f74f6c42a20e5dcaf7820b5493ae0CAS |

Brugnano, C., Guglielmo, L., and Zagami, G. (2008). Food type effects on reproduction of hyperbenthic calanoid species Pseudocyclops xiphophorus Well, 1967, under laboratory conditions. Chemistry and Ecology 24, 111–117.
Food type effects on reproduction of hyperbenthic calanoid species Pseudocyclops xiphophorus Well, 1967, under laboratory conditions.Crossref | GoogleScholarGoogle Scholar |

Brugnano, C., Guglielmo, L., Ianora, A., and Zagami, G. (2009). Temperature effects on fecundity, development and survival of the benthopelagic calanoid copepod, Pseudocyclops xiphophorus. Marine Biology 156, 331–340.
Temperature effects on fecundity, development and survival of the benthopelagic calanoid copepod, Pseudocyclops xiphophorus.Crossref | GoogleScholarGoogle Scholar |

Brugnano, C., D’Adamo, R., Fabbrocini, A., Granata, A., and Zagami, G. (2011). Zooplankton responses to hydrological and trophic variability in a Mediterranean coastal ecosystem (Lesina Lagoon, South Adriatic Sea). Chemistry and Ecology 27, 461–480.
Zooplankton responses to hydrological and trophic variability in a Mediterranean coastal ecosystem (Lesina Lagoon, South Adriatic Sea).Crossref | GoogleScholarGoogle Scholar |

Brugnano, C., Granata, A., Guglielmo, L., and Zagami, G. (2012). Spring diel vertical distribution of copepod abundances and diversity in the open central Tyrrhenian Sea (western Mediterranean). Journal of Marine Systems 105–108, 207–220.
Spring diel vertical distribution of copepod abundances and diversity in the open central Tyrrhenian Sea (western Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Calbet, A. (2001). Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems. Limnology and Oceanography 46, 1824–1830.
Mesozooplankton grazing effect on primary production: a global comparative analysis in marine ecosystems.Crossref | GoogleScholarGoogle Scholar |

Calbet, A., and Landry, M. R. (2004). Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnology and Oceanography 49, 51–57.
Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVelt74%3D&md5=3a620b7ed7274709451cc5137abaa262CAS |

Campolmi, M., Zagami, G., and Costanzo, G. (2000). Prima segnalazione di Ridgewayia marki minorcaensis (Copepoda, Calanoida) nel Mediterraneo Centrale. Biologia Marina Mediterranea 7, 858–860.

Campolmi, M., Zagami, G., Guglielmo, L., and Mazzola, A. (2001). Short-term variability of mesozooplankton in a Mediterranean Coastal Sound (Stagnone di Marsala, Western Sicily). In ‘Mediterranean Ecosystems: Structure and Processes’. (Eds F. M. Faranda, L. Guglielmo and G. Spezie.) pp. 155–169. (Springer Verlag: Milano, Italy.)

Campolmi, M., Zagami, G., Pellerito, R., Granata, A., and Mazzola, A. (2002). Variazioni spazio-temporali del popolamento a Calanoidi iperbentonici (Crustacea: Copepoda) in un ambiente costiero mediterraneo. Biologia Marina Mediterranea 9, 350–357.

Carola, M., Razouls, C., and Pretus, J. L. (1995). Two relict Tethyan copepods new for the Mediterranean Sea: Exumella polyarthra and Paramisophria ammophila (Copepoda: Calanoida). Vie et Milieu 45, 147–155.

Castro-Longoria, E. (2003). Egg production and hatching success of four Acartia species under different temperature and salinity regimes. Journal of Crustacean Biology 23, 289–299.
Egg production and hatching success of four Acartia species under different temperature and salinity regimes.Crossref | GoogleScholarGoogle Scholar |

Cavallo, A., and Belmonte, G. (1995). Lo zooplancton dello stagno costiero ‘Le Cesine’ (Maggio 1993-Agosto 1994). The zooplankton of the coastal pond ‘Le Cesine’ (May 1993-August 1994). Thalassia Salentina 21, 51–58.

Clarke, K. R., and Warwick, R. M. (2004). ‘Change in Marine Communities: an Approach to Statistical Analysis and Interpretation.’ 2nd edn. (Primer-E Ltd: Plymouth, UK).

Colombo, G., Ceccherelli, V. U., and Ferrari, I. (1983–84). Lo zooplankton delle lagune. Nova Thalassia 6, 185–200.

Crisafi, P., Baccellieri, P., and Fabiano, N. (1973). Successioni stagionali e rilievi sulla progressiva riduzione qualitativa e quantitativa dello zooplancton dei laghi di Ganzirri e di Faro (Messina). Atti Società Peloritana Scienze Fisiche Matematiche Naturali 19, 101–115.

Dagg, M. J., and Turner, J. T. (1982). The impact of copepod grazing on the phytoplankton of Georges Bank and the New York Bight. Canadian Journal of Fisheries and Aquatic Sciences 39, 979–990.
The impact of copepod grazing on the phytoplankton of Georges Bank and the New York Bight.Crossref | GoogleScholarGoogle Scholar |

Damkaer, D. M. (1970). Parastephos occatum, a new species of hyperbenthic copepod (Calanoida: Stephidae) from inland marine waters of Washington state. Proceedings of the Biological Society of Washington 83, 505–514.

Dubischar, C. D., and Bathmann, U. V. (1997). Grazing impact of copepods and salps on phytoplankton in the Atlantic sector of the Southern Ocean. Deep-sea Research. Part II, Topical Studies in Oceanography 44, 415–433.
Grazing impact of copepods and salps on phytoplankton in the Atlantic sector of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar |

Fraser, J. H. (1968). Standardization of zooplankton sampling methods at sea: introduction. Monographs on Oceanographic Methodology 2, 147–149.

Gallienne, C. P., and Robins, D. B. (2001). Is Oithona the most important copepod in the world’s oceans? Journal of Plankton Research 23, 1421–1432.
Is Oithona the most important copepod in the world’s oceans?Crossref | GoogleScholarGoogle Scholar |

Genovese, S. (1963). Osservazioni preliminari sullo zooplancton degli stagni salmastri di Ganzirri e di Faro. Bollettino di Pesca, Piscicoltura e Idrobiologia 1, 1–12.

Gilabert, J. (2001). Seasonal plankton dynamics in a Mediterranean hypersaline coastal lagoon: the Mar Menor. Journal of Plankton Research 23, 207–217.
Seasonal plankton dynamics in a Mediterranean hypersaline coastal lagoon: the Mar Menor.Crossref | GoogleScholarGoogle Scholar |

González, H. E., Sobarzo, M., Figueroa, D., and Nothig, E. M. (2000). Composition, biomass and potential grazing impact of the crustacean and pelagic tunicates in the northern Humboldt Current area off Chile: differences between El Ninõ and non-El Ninõ years. Marine Ecology Progress Series 195, 201–220.
Composition, biomass and potential grazing impact of the crustacean and pelagic tunicates in the northern Humboldt Current area off Chile: differences between El Ninõ and non-El Ninõ years.Crossref | GoogleScholarGoogle Scholar |

Grahame, J. (1979). A new species of Exumella Fosshagen (Copepoda: Calanoida), from Kingston Harbour, Jamaica. Crustaceana 36, 15–22.
A new species of Exumella Fosshagen (Copepoda: Calanoida), from Kingston Harbour, Jamaica.Crossref | GoogleScholarGoogle Scholar |

Gubanova, A., and Altukhov, D. (2007). Establishment of Oithona brevicornis Giesbrecht, 1892 (Copepoda: Cyclopoida) in the Black Sea. Aquatic Invasions 2, 407–410.
Establishment of Oithona brevicornis Giesbrecht, 1892 (Copepoda: Cyclopoida) in the Black Sea.Crossref | GoogleScholarGoogle Scholar |

Halim, Y., and Guerguess, S. K. (1981). Coastal lakes of the Nile Delta. Lake Manzalah. UNESCO Technical Papers in Marine Science 33, 135–172.

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologica Electronica 4, 1–9. Available at http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Hopcroft, R. R., Roff, J. C., and Lombard, D. (1998). Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Marine Biology 130, 593–604.
Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species.Crossref | GoogleScholarGoogle Scholar |

Hopcroft, R. R., Roff, J. C., and Chavez, F. P. (2001). Size paradigms in copepod communities: a re-examination. Hydrobiologia 453–454, 133–141.
Size paradigms in copepod communities: a re-examination.Crossref | GoogleScholarGoogle Scholar |

Hutchinson, G. E. (1967). ‘A Treatise on Limnology. Introduction to Lake Biology and the Limnoplankton, 2.’ (John Wiley and Sons: New York.)

Ianora, A. (1998). Copepod life history traits in subtemperate regions. Journal of Marine Systems 15, 337–349.
Copepod life history traits in subtemperate regions.Crossref | GoogleScholarGoogle Scholar |

Jacoby, C. A., and Greenwood, J. G. (1988). Spatial, temporal and behavioural patterns in emergence of zooplankton in the lagoon of Heron Reef, Great Barrier Reef, Australia. Marine Biology Berlin 97, 309–328.
Spatial, temporal and behavioural patterns in emergence of zooplankton in the lagoon of Heron Reef, Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |

Jaume, D., and Boxshall, G. A. (1995). A new species of Exumella (Copepoda: Calanoida: Ridgewayiidae) from anchialine caves in the Mediterranean Sea. Sarsia 80, 93–105.

Jaume, D., and Boxshall, G. A. (1996). A new genus and two new species of cave-dwelling misophrioid copepods from Balearic Islands (Mediterranean). Journal of Natural History 30, 989–1006.
A new genus and two new species of cave-dwelling misophrioid copepods from Balearic Islands (Mediterranean).Crossref | GoogleScholarGoogle Scholar |

Jaume, D., Cartes, J. E., and Boxshall, G. A. (2000). Depth zonation of Paramisophria (Copepoda: Calanoida: Arietellidae) in the Mediterranean, with description of three new species from the bathyal hyperbenthos and littoral caves. Contributions to Zoology 68, 205–244.

Kjerfve, B. (1994). ‘Coastal Lagoon Processes. Elsevier Oceanography Series’ (Elsevier: Amsterdam.)

Lampert, W. (1993). Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator-avoidance hypothesis. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie 39, 79–88.

Laserre, P. (1981). Biological approach to coastal lagoons: metabolism and physiological ecology. UNESCO Technical Papers in Marine Science 33, 315–324.

Laserre, P., and Marzollo, A. (2000). ‘The Venice Lagoon Ecosystem. Inputs and Interactions Between Land and Sea.’ MAP Series 25. (UNESCO, Paris, France.)

Laserre, P., and Postma, H. (1982). ‘Coastal Lagoons.’ Oceanologica Acta Special Volume.

Magazzù, G., and Decembrini, F. (1995). Primary production, biomass and abundances of phototrophic picoplankton in the Mediterranean Sea: a review. Aquatic Microbial Ecology 9, 97–104.
Primary production, biomass and abundances of phototrophic picoplankton in the Mediterranean Sea: a review.Crossref | GoogleScholarGoogle Scholar |

Margalef, D. R. (1958). Information theory in ecology. General Systems 3, 36–71.

Ohtsuka, S. (1985). Calanoid copepods collected from Tanabe Bay on the Pacific coast of the middle Honshu, Japan II: Arietellidae (cont.). Publications of the Seto Marine Biological Laboratory 30, 287–306.

Ohtsuka, S., Fosshagen, A., and Putchakarn, S. (1999). Three new species of the demersal calanoid copepod Pseudocyclops from Phuket, Thailand. Plankton Biology and Ecology 46, 132–147.

Paffenhöfer, G. A. (1998). Heterotrophic protozoa and small metazoa: feeding rates and prey–consumer interactions. Journal of Plankton Research 20, 121–133.
Heterotrophic protozoa and small metazoa: feeding rates and prey–consumer interactions.Crossref | GoogleScholarGoogle Scholar |

Pansera, M. (2011). Struttura e dinamica del mesozooplancton nel Lago di Faro: abbondanza, biomassa e spettro dimensionale delle specie dominanti in relazione ai fattori idrologici e trofici. Ph.D. Thesis, University of Messina, Italy.

Pearre, S. (2003). Eat and run? The hunger satiation hypothesis in vertical migration: history, evidence and consequences. Biological Reviews of the Cambridge Philosophical Society 78, 1–79.
Eat and run? The hunger satiation hypothesis in vertical migration: history, evidence and consequences.Crossref | GoogleScholarGoogle Scholar | 12620061PubMed |

Phleger, F. B. (1969). Some general features of coastal lagoons. In ‘Lagunas Costerai: un Simposio’. (Ed. A. Ayala-Castañeres.) pp. 5–26. (Universidad Nacional Autónoma de México: México D.F., México.)

Pielou, E. C. (1969). ‘An Introduction to Mathematical Ecology.’ (John Wiley and Sons, Wiley-Interscience, New York, USA)

Razouls, C., and Carola, M. (1996). The presence of Ridgewayia marki minorcaensis n. ssp. in the Western Mediterranean. Crustaceana 69, 47–55.
The presence of Ridgewayia marki minorcaensis n. ssp. in the Western Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Saccà, A., Borrego, C. M., Renda, R., Triadò-Margarit, X., Bruni, V., and Guglielmo, L. (2009). Predation impactof ciliated and flagellated protozoa during a summer bloom of brown sulfur bacteria in a meromictic coastal lake. FEMS Microbiology Ecology 70, 42–53.
Predation impactof ciliated and flagellated protozoa during a summer bloom of brown sulfur bacteria in a meromictic coastal lake.Crossref | GoogleScholarGoogle Scholar | 19622068PubMed |

Saiz, E., and Alcaraz, M. (1990). Pigment gut contents of copepods and deep phytoplankton maximum in the western Mediterranean. Journal of Plankton Research 12, 665–672.
Pigment gut contents of copepods and deep phytoplankton maximum in the western Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Santangelo, J. M., Rocha, M., Bozelli, R. L., Carneiro, L. S., and Esteves, F. A. (2007). Zooplankton responses to sandbar opening in a tropical eutrophic coastal lagoon. Estuarine, Coastal and Shelf Science 71, 657–668.
Zooplankton responses to sandbar opening in a tropical eutrophic coastal lagoon.Crossref | GoogleScholarGoogle Scholar |

Scotto di Carlo, B., Ianora, A., Fresi, E., and Hure, J. (1984). Vertical zonation patterns for Mediterranean copepods from the surface to 3000 m at a fixed station in the Tyrrhenian Sea. Journal of Plankton Research 6, 1031–1056.
Vertical zonation patterns for Mediterranean copepods from the surface to 3000 m at a fixed station in the Tyrrhenian Sea.Crossref | GoogleScholarGoogle Scholar |

Selifonova, Zh. P. (2009). Oithona brevicornis Giesbrecht (Copepoda, Cyclopoida) in harborages of the northeastern part of the Black Sea Shelf. Inland Water Biology 2, 30–32.
Oithona brevicornis Giesbrecht (Copepoda, Cyclopoida) in harborages of the northeastern part of the Black Sea Shelf.Crossref | GoogleScholarGoogle Scholar |

Shannon, C. E., and Weaver, W. (1963). ‘The Mathematical Theory of Communication.’ (University of Illinois Press: Urbana, IL.)

Sorokin, Y. I., and Donato, N. (1975). On the carbon and sulphur metabolism in the meromictic Lake Faro (Sicily). Hydrobiologia 47, 241–252.
On the carbon and sulphur metabolism in the meromictic Lake Faro (Sicily).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xkt1Giu70%3D&md5=6773beefecabbb0da91930681e2da897CAS |

SPSS Inc. (2008). ‘SPSS Statistics for Windows, Version 17.0.’ (SPSS: Chicago, IL.)

Stock, J. H. (1993). Some remarkable distribution patterns in stygobiont Amphipoda. Journal of Natural History 27, 807–819.
Some remarkable distribution patterns in stygobiont Amphipoda.Crossref | GoogleScholarGoogle Scholar |

Suzuki, M. S., Figueiredo, R. O., Castro, S. C., Silva, C. F., Pereira, E. A., Silva, J. A., and Aragon, G. T. (2002). Sand bar opening in a coastal lagoon (Iquipari) in the Northern region of the Rio de Janeiro state: hydrological and hydrochemical changes. Brazilian Journal of Biology 62, 51–62.
Sand bar opening in a coastal lagoon (Iquipari) in the Northern region of the Rio de Janeiro state: hydrological and hydrochemical changes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38vivFSnuw%3D%3D&md5=164b87d328ea90734b9c3d46a49d3b44CAS |

Tancioni, L., Mariani, S., Maccaroni, A., Mariani, A., Massa, F., Scardi, M., and Cataudella, S. (2003). Locality-specific variation in the feeding of Sparus aurata L.: evidence from two Mediterranean lagoon systems. Estuarine, Coastal and Shelf Science 57, 469–474.

Townsend, C. R. (1991). Community organization in marine and freshwater environments. In ‘Fundamentals of Aquatic Ecology’. (Eds R. K. S. Barnes and K. H. Mann.) pp. 125–144. (Blackwell Scientific Publications: Oxford, UK.)

Trüpper, H. G., and Genovese, S. (1968). Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily). Limnology and Oceanography 13, 225–232.
Characterization of photosynthetic sulfur bacteria causing red water in Lake Faro (Messina, Sicily).Crossref | GoogleScholarGoogle Scholar |

Turner, J. (2004). The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies 43, 255–266.

UNESCO (1981). Coastal lagoons research, present and future. UNESCO Technical Papers in Marine Science 33, 348 pp.

Uye, S., Shimazu, T., Yamamuro, M., Ishitobi, Y., and Kamiya, H. (2000). Geographical and seasonal variations in mesozooplankton abundance and biomass in relation to environmental parameters in Lake Shinji–Ohashi River–Lake Nakaumi brackish water system, Japan. Journal of Marine Systems 26, 193–207.
Geographical and seasonal variations in mesozooplankton abundance and biomass in relation to environmental parameters in Lake Shinji–Ohashi River–Lake Nakaumi brackish water system, Japan.Crossref | GoogleScholarGoogle Scholar |

Wells, J. B. J. (1967). The littoral Copepoda (Crustacea) from Inhaca Island, Monzambique. Transactions of the Royal Society of Edinburgh 67, 189–358.
The littoral Copepoda (Crustacea) from Inhaca Island, Monzambique.Crossref | GoogleScholarGoogle Scholar |

Yáñez-Arancibia, A. (1981). Ecological studies in Puerto Real inlet, Laguna de Terminos, Mexico: discussion on the trophic structure of fish communities on Thalassia testudinum banks. UNESCO Technical Papers in Marine Science 33, 191–231.

Zagami, G. (2010). Copepoda Calanoida Iperbentonici. Biologia Marina Mediterranea 17, 432–434.

Zagami, G., and Brugnano, C. (2012). A new species of smirnovipinid copepod (Copepoda: Cyclopoida: Smirnovipinidae) from an anchialine cave in Italian coastal waters, with a replacement name for the genus Ginesia Jaume and Boxshall, 1997. The Italian Journal of Zoology 79, 582–589.
A new species of smirnovipinid copepod (Copepoda: Cyclopoida: Smirnovipinidae) from an anchialine cave in Italian coastal waters, with a replacement name for the genus Ginesia Jaume and Boxshall, 1997.Crossref | GoogleScholarGoogle Scholar |

Zagami, G., and Guglielmo, L. (1995). Distribuzione e dinamica stagionale dello zooplancton nei laghi di Faro e Ganzirri. Biologia Marina Mediterranea 2, 83–88.

Zagami, G., Costanzo, G., Campolmi, M., Granata, A., and Brugnano, C. (2003). Ciclo biologico del copepode Pseudocyclops umbraticus Giesbrecht, 1893 allevato in laboratorio. Biologia Marina Mediterranea 10, 273–275.

Zagami, G., Costanzo, G., and Crescenti, N. (2005). First record in Mediterranean Sea and redescription of the bentho-planktonic calanoid copepod species Pseudocyclops xiphophorus Wells, 1967. Journal of Marine Systems 55, 67–76.
First record in Mediterranean Sea and redescription of the bentho-planktonic calanoid copepod species Pseudocyclops xiphophorus Wells, 1967.Crossref | GoogleScholarGoogle Scholar |

Zervoudaki, S., Christou, E. D., Nielsen, T. G., Siokou-Frangou, I., Assimakopoulou, G., Giannakourou, A., Maar, A., Pagou, K., Krasakopoulou, E., Christaki, U., and Moraitou-Apostolopoulou, M. (2007). The importance of small-sized copepods in a frontal area of the Aegean Sea. Journal of Plankton Research 29, 317–338.
The importance of small-sized copepods in a frontal area of the Aegean Sea.Crossref | GoogleScholarGoogle Scholar |