Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

A warm-core eddy linking shelf, Leeuwin Current and oceanic waters demonstrated by near-shelf distribution patterns of Synechococcus spp. and Prochlorococcus spp. in the eastern Indian Ocean

Harriet Paterson A C D , Kathy Heel B and Anya Waite A
+ Author Affiliations
- Author Affiliations

A School of Environmental Systems Engineering and The Oceans Institute, The University of Western Australia, Crawley, WA 6009, Australia.

B School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA 6009, Australia.

C Centre of Excellence in Natural Resource Management, The University of Western Australia, Albany, WA 6330, Australia.

D Corresponding author. Email: Harriet.Paterson@uwa.edu.au

Marine and Freshwater Research 64(11) 1011-1021 https://doi.org/10.1071/MF12271
Submitted: 23 September 2012  Accepted: 25 April 2013   Published: 19 July 2013

Abstract

In May 2006 (Austral autumn) the distribution and abundance of the cyanobacteria Synechococcus spp. and Prochlorococcus spp. were examined to assess the connectivity of a forming warm-core mesoscale eddy with the Leeuwin Current and shelf waters off south-west Western Australia. Distributions of the cyanobacteria resulted in two broad categories of samples, those dominated by Prochlorococcus spp. from subtropical and Leeuwin Current waters and those with mixed populations from shelf and eddy waters. Water temperature (21.45°C), salinity (35.46) and nitrate (0.33 μM) contributed to these groupings. Synechococcus spp. reached an integrated abundance of 3.3 × 108 cells cm–2 in warm shelf waters, with 60% of cells in G2 phase in the mid-afternoon (~16:00 hours). Cooler, nitrate-poor oceanic waters were almost exclusively inhabited by Prochlorococcus spp., with the highest abundance of 4.2 × 108 cells cm–2 in cool deep waters off the Capes in the south with 40% of cells in G2 phase in the evening (~19:00 hours). The eddy perimeter represented a clear boundary for both species, but showed connectivity between the shelf and eddy centre as both locations had a mixed community, dominated by Synechococcus spp. Eddies of the Leeuwin Current advect shelf waters, and their assemblages and productivity offshore.

Additional keywords: cyanobacteria, division rate, Eastern Indian Ocean, Leeuwin Current, picoplankton, warm core eddy.


References

Anfuso, E., Debelius, B., Castro, C. G., Ponce, R., Forja, J. M., and Lubian, L. M. (2013). Seasonal evolution of chlorophyll a and cyanobacteria (Prochlorococcus and Synechococcus) on the northeast continental shelf of the Gulf of Cádiz: relation to thermohaline and nutrients fields. Advances in MarineBbiochemistry 77, 25–36.
| 1:CAS:528:DC%2BC3sXnsVWksL4%3D&md5=2e0d2bd34e33576b4c95abe21fa61d5dCAS |

Armstrong, F. A. J. (1951). The determination of silicate in seawater. Journal of the Marine Biological Society of the United Kingdom 30, 149–160.
| 1:CAS:528:DyaG38XkvF2m&md5=848387af296a64192dfe3fd5f13c300fCAS |

Baumdicker, F., Hess, W. R., and Pfaffelhuber, P. (2012). The infinitely many genes model for the distributed genome of bacteria. Genome Biology and Evolution 4, 443–456.
The infinitely many genes model for the distributed genome of bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSjtrnE&md5=e725c0a955266806faf6c5772270bc76CAS | 22357598PubMed |

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6: User Manual/Tutorial’. (PRIMER-E: Plymouth, UK.)

Crosbie, N. D., and Furnas, M. J. (2001). Abundance distribution and flow-cytometric characterization of picophytoprokaryote populations in central (17°S) and southern (20°S) shelf waters of the Great Barrier Reef. Journal of Plankton Research 23, 809–828.
Abundance distribution and flow-cytometric characterization of picophytoprokaryote populations in central (17°S) and southern (20°S) shelf waters of the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

De’ath, G. (2007). Mvpart: multivariate partitioning R package version 1.2–6. http://www.r.project.org/ and http://CRAN.R-project.org/package=mvpart.

Echevarría, F., Zabala, L., Corzo, A., Navarro, G., Prieto, L., and Macías, D. (2009). Spatial distribution of autotrophic picoplankton in relation to physical forcing: the Gulf of Cádiz, Strait of Gibraltar and Alborán Sea case study. Journal of Plankton Research 31, 1339–1351.
Spatial distribution of autotrophic picoplankton in relation to physical forcing: the Gulf of Cádiz, Strait of Gibraltar and Alborán Sea case study.Crossref | GoogleScholarGoogle Scholar |

Ellwood, M. J., Law, C. S., Hall, J., Malcolm, E., Woodward, S., Strzepek, R., Kuparinen, J., Thompson, K., Pickmere, S., Sutton, P., and Boyd, P. W. (2013). Relationships between nutrient stocks and inventories and phytoplankton physiological status along an oligotrophic meridional transect in the Tasman Sea. Deep-sea Research. Part I, Oceanographic Research Papers 72, 102–120.
Relationships between nutrient stocks and inventories and phytoplankton physiological status along an oligotrophic meridional transect in the Tasman Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCmu7w%3D&md5=64649ef239762066af7da3b200273bc4CAS |

Gilbert, J. D. J., and Fagan, W. F. (2011). Contrasting mechanisms of proteomic nitrogen thrift in Prochlorococcus. Molecular Ecology 20, 92–104.
Contrasting mechanisms of proteomic nitrogen thrift in Prochlorococcus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslOit7w%3D&md5=14187649308f899104b08fdfd618e2e5CAS |

Grob, C., Ulloa, H., Claustre, H., Hout, Y., Alarcón, G., and Marie, D. (2007). Contribution of picoplankton in the eastern South Pacific. Biogeosciences 4, 837–852.
Contribution of picoplankton in the eastern South Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvVSht7c%3D&md5=ced6cbdc0ce86403897e46d95f53510fCAS |

Hanson, C. E., Waite, A. M., Thompson, P. A., and Pattiaratchi, C. B. (2007). Phytoplankton community structure and nitrogen nutrition in Leeuwin Current and coastal waters off the Gascoyne region of Western Australia. Deep-sea Research. Part II, Topical Studies in Oceanography 54, 884–901.
Phytoplankton community structure and nitrogen nutrition in Leeuwin Current and coastal waters off the Gascoyne region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Hanson, C. E., McLaughlin, M. J., Hyndes, G. A., and Strzelecki, J. (2009). Selective uptake of prokaryotic picoplankton by a marine sponge (Callyspongia spp.) within an oligotrophic coastal system. Estuarine, Coastal and Shelf Science 84, 289–297.
Selective uptake of prokaryotic picoplankton by a marine sponge (Callyspongia spp.) within an oligotrophic coastal system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1OitLw%3D&md5=94b6cefe795edbead5b31de0b637c9f5CAS |

Holliday, D., Beckley, L. E., and Olivar, P. (2011). Incorporation of larval fish into a developing anti-cyclonic eddy of the Leeuwin Current off south-western Australia. Journal of Plankton Research 33, 1696–1708.
Incorporation of larval fish into a developing anti-cyclonic eddy of the Leeuwin Current off south-western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Oiu7fI&md5=e9d9f35adb3d8b4f6c9bfd109fbec3b3CAS |

Holtzendorff, J., Partensky, F., Mella, D., Lennon, J. F., Hess, W. R., and Garczarek, L. (2008). Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. Journal of Biological Rhythms 23, 187–199.
Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFegsbg%3D&md5=fac6a0cce823c4e2d6f6bb4a243ae8e8CAS | 18487411PubMed |

Jiao, N., Yang, Y., Koshikawa, H., and Watanbe, M. (2002). Influence of hydrographic conditions on picoplankton in the East China Sea. Aquatic Microbial Ecology 30, 37–48.
Influence of hydrographic conditions on picoplankton in the East China Sea.Crossref | GoogleScholarGoogle Scholar |

Liu, H., Campbell, L., and Nolla, H. A. (1997). Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquatic Microbial Ecology 12, 39–47.
Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Liu, H., Landry, M. R., Vaulot, D., and Campbell, L. (1999). Prochlorococcus growth rates in the equatorial Pacific: an application of the ʄmax approach. Journal of Geophysical Research 104, 3391–3399.
Prochlorococcus growth rates in the equatorial Pacific: an application of the ʄmax approach.Crossref | GoogleScholarGoogle Scholar |

Lourey, M. J., Dunn, J. R., and Waring, J. (2006). A mixed-layer nutrient climatology of Leeuwin Current and western Australian shelf waters: seasonal nutrient dynamics and biomass. Journal of Marine Systems 59, 25–51.
A mixed-layer nutrient climatology of Leeuwin Current and western Australian shelf waters: seasonal nutrient dynamics and biomass.Crossref | GoogleScholarGoogle Scholar |

Lourey, M. J., Thompson, P. A., McLaughlin, M. J., Bonham, P., and Feng, M. (2013). Primary production and phytoplankton community structure during a winter shelf-scale phytoplankton bloom off Western Australia. Marine Biology 160, 355–369.
Primary production and phytoplankton community structure during a winter shelf-scale phytoplankton bloom off Western Australia.Crossref | GoogleScholarGoogle Scholar |

Marie, D., Partensky, F., Jacquet, S., and Vaulot, D. (1997). Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology 63, 186–193.
| 1:CAS:528:DyaK2sXhs1Oiug%3D%3D&md5=4eabccfe00a68eb8f4ae1a216dd16452CAS | 16535483PubMed |

Murphy, J., and Riley, J. P. (1962). A modified single-solution for the determination of phosphate in natural waters. Analytica Chimica Acta 27, 31–36.
A modified single-solution for the determination of phosphate in natural waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF38XksVyntr8%3D&md5=5ea19289e2b04e8c9a62a02e1ed997fdCAS |

Parsons, T. R., Maita, Y., and Lalli, C. M. (1984). ‘A Manual of Chemical and Biological Methods for Seawater Analysis.’ (Pergamon Press: Oxford.)

Partensky, F., and Garczarek, L. (2010). Prochlorococcus: advantages and limits of minimalism. Annual Review of Marine Science 2, 305–331.
Prochlorococcus: advantages and limits of minimalism.Crossref | GoogleScholarGoogle Scholar | 21141667PubMed |

Partensky, F., Blanchot, J., Lantonie, F., Neveux, J., and Marie, D. (1996). Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean. Deep-sea Research. Part I, Oceanographic Research Papers 43, 1191–1213.
Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xns1antrw%3D&md5=cd1ce80e652a8bc061e6e0cd078ed727CAS |

Partensky, F., Blanchot, J., and Vaulot, D. (1999). Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. In ‘Marine Cyanobacteria. Vol. 19’. (Eds L. Charpy and A. Larkum.) pp. 457–475. (Musée Océanographique: Monaco.)

Paterson, H. L., Knott, B., and Waite, A. M. (2007). Microzooplankton community structure and grazing on phytoplankton, in an eddy pair in the Indian Ocean off Western Australia. Deep-sea Research. Part II, Topical Studies in Oceanography 54, 1076–1093.
Microzooplankton community structure and grazing on phytoplankton, in an eddy pair in the Indian Ocean off Western Australia.Crossref | GoogleScholarGoogle Scholar |

Paterson, H. L., Feng, M., Waite, A. M., Gomis, D., Beckley, L. E., Holliday, D., and Thompson, P. A. (2008). Physical and chemical signatures of a developing anticyclonic eddy in the Leeuwin Current, eastern Indian Ocean. Journal of Geophysical Research C Oceans 113, C07049.
Physical and chemical signatures of a developing anticyclonic eddy in the Leeuwin Current, eastern Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Pearce, A. F., and Griffiths, R. W. (1991). The mesoscale structure of the Leeuwin Current – a comparison of laboratory models and satellite imagery. Journal of Geophysical Research C Oceans 96, 16 739–16 757.
The mesoscale structure of the Leeuwin Current – a comparison of laboratory models and satellite imagery.Crossref | GoogleScholarGoogle Scholar |

Rocap, G., Distel, D. L., Waterbury, J. B., and Chisholm, S. W. (2002). Resolution of Prochlorococcus and Synechococcus ecotypes using 16S–23S ribosomal DNA internal transcribed spacer sequences. Applied and Environmental Microbiology 68, 1180–1191.
Resolution of Prochlorococcus and Synechococcus ecotypes using 16S–23S ribosomal DNA internal transcribed spacer sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitFSjsr4%3D&md5=f0ae937f498272fff7d3f436cc195392CAS | 11872466PubMed |

Rousseaux, C. S. G., Lowe, R., Feng, M., Waite, A. M., and Thompson, P. A. (2011). The role of the Leeuwin Current and mixed layer depth on the autumn phytoplankton bloom off Ningaloo Reef, Western Australia. Continental Shelf Research 32, 22–35.

Seymour, J. R., Doblin, M. A., Jeffries, T. C., Brown, M. V., Newton, K., Ralph, P. J., Baird, M., and Mitchell, J. G. (2012). Contrasting microbial assemblages in adjacent water masses associated with the East Australian Current. Environmental Microbiology Reports 4, 548–555.
Contrasting microbial assemblages in adjacent water masses associated with the East Australian Current.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslSmtw%3D%3D&md5=fd0e87f02363e1340591ffd90328fca9CAS | 23760900PubMed |

Thompson, P. A., Wild-Allen, K., Lourey, M., Rousseaux, C., Waite, A. M., Feng, M., and Beckley, L. E. (2011). Nutrients in an oligotrophic boundary current: evidence of a new role for the Leeuwin Current. Progress in Oceanography 91, 345–359.
Nutrients in an oligotrophic boundary current: evidence of a new role for the Leeuwin Current.Crossref | GoogleScholarGoogle Scholar |

Twomey, L. J., Waite, A. M., Pez, V., and Pattiaratchi, C. B. (2007). Variability in nitrogen uptake and fixation in the oligotrophic waters off the south west coast of Australia. Deep-sea Research. Part II, Topical Studies in Oceanography 54, 925–942.
Variability in nitrogen uptake and fixation in the oligotrophic waters off the south west coast of Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFKjs78%3D&md5=9ef2ce87a03ef479d4c37e48b9392a38CAS |

Vaulot, D. (1989). CYTOPC: processing software for flow cytometric data. Signal and Noise 2, 8.

Vaulot, D., Marie, D., Olson, R. J., and Chisholm, S. W. (1995). Growth of Prochlorococcus spp., a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268, 1480–1482.
Growth of Prochlorococcus spp., a photosynthetic prokaryote, in the equatorial Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmtFKkur0%3D&md5=736193fc59547aeebca144144a90d7cbCAS | 17843668PubMed |

Waite, A. M., Thompson, P. A., Pesant, S., Feng, M., Beckley, L. E., Domingues, C. M., Gaughan, D., Hanson, C. E., Holl, C. M., Koslow, T., Meuleners, M., Montoya, J. P., Moore, T., Muhling, B. A., Paterson, H., Rennie, S., Strzelecki, J., and Twomey, L. (2007). The Leeuwin Current and its eddies: an introductory overview. Deep-sea Research. Part II, Topical Studies in Oceanography 54, 789–796.
The Leeuwin Current and its eddies: an introductory overview.Crossref | GoogleScholarGoogle Scholar |

Wood, E. D., Armstrong, F. A. J., and Richards, F. A. (1967). Determination of nitrate in sea water by cadmium–copper reduction to nitrite. Journal of the Marine Biological Association of the United Kingdom 47, 23–31.
Determination of nitrate in sea water by cadmium–copper reduction to nitrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktlKgsr8%3D&md5=d2571beeca70ec79c31663cddbade036CAS |

Zubkov, M. V., Fuchs, B. M., Tarran, G. A., Burkill, P. H., and Amann, R. (2003). High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Applied and Environmental Microbiology 69, 1299–1304.
High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtF2itbg%3D&md5=865f5980925a7deae2b2c1652ca85d21CAS | 12571062PubMed |