Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

CO2 generation by calcified invertebrates along rocky shores of Brittany, France

Christian Hily A B , Jacques Grall A , Laurent Chauvaud A , Morgane Lejart A and Jacques Clavier A
+ Author Affiliations
- Author Affiliations

A LEMAR (UMR CNRS/IRD 6539) Institut Universitaire Européen de la mer; Université de Bretagne Occidentale, Technopole Brest Iroise, 29280, Plouzané, France.

B Corresponding author. Email: christian.hily@univ-brest.fr

Marine and Freshwater Research 64(2) 91-101 https://doi.org/10.1071/MF12146
Submitted: 8 June 2012  Accepted: 14 October 2012   Published: 8 February 2013

Abstract

Many autochthonous and alien macroinvertebrates of the intertidal zone are biocalcifiers, and the present study proposes a first assessment of their calcimass and their annual calcium carbonate (CaCO3) production at a regional scale, along 500 km of the coastline of Brittany, France, which represents a wide range of the rocky-shore habitats commonly encountered in the north-eastern Atlantic region. All sites considered together gave a mean calcimass estimate of 5327 g m–2. The corresponding mean CaCO3 gross production was 2584 g m–2 year–1. The net production (including dissolution) by biocalcification was 2384 g CaCO3 m–2 year–1. Estimations of CO2 production via both calcification and respiration were carried out in particular for the phylum Mollusca and for crustacean barnacles, dominating in terms of calcimass. Mean CO2 production obtained by summing CO2 fluxes related to net CaCO3 production and respiration for all sampled sites was 22.9 mol m–2 year–1. These results illustrate the significance of CO2 production during biogenic CaCO3 precipitation of intertidal invertebrates in such temperate coastal environment compared with tropical zones and the contribution of the shelves to the global CaCO3 budget.

Additional keywords: biocalcification, CaCO3 production, CO2, macrozoobenthos, rocky shores, temperate.


References

Andersson, J. H., Wijsman, J. W. M., Herman, P. M. J., Middleburg, J. J., Soetaert, K., and Heip, C. (2004). Respiration patterns in the deep ocean. Geophysical Research Letters 31, L03304.
Respiration patterns in the deep ocean.Crossref | GoogleScholarGoogle Scholar |

Andersson, A. J., Mackenzie, F. T., and Bates, N. R. (2008). Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine Ecology Progress Series 373, 265–273.
Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCrs7Y%3D&md5=3d102b86565f3d9c3bf4ab17ecdfb4f4CAS |

Asmus, H. (1987). Secondary production of an intertidal mussel bed related to its storage and turn over compartments. Marine Ecology Progress Series 39, 251–266.
Secondary production of an intertidal mussel bed related to its storage and turn over compartments.Crossref | GoogleScholarGoogle Scholar |

Barker, S., and Elderfield, H. (2002). Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297, 833–836.
Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvV2jsLk%3D&md5=f1ce87025ae2b1f151242b6461943b78CAS |

Bates, N. R. (2002). Seasonal variability of the effect of coral reefs on seawater CO2 and air-sea CO2 exchange. Limnology and Oceanography 47, 43–52.
Seasonal variability of the effect of coral reefs on seawater CO2 and air-sea CO2 exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtlSqsLw%3D&md5=aab4512350840268e7c50640529b1017CAS |

Berelson, W. M., Balch, W. M., Najjar, R., Feely, R. A., Sabine, C., and Lee, K. (2007). Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget. Global Biogeochemical Cycles 21, .
Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVGrsbo%3D&md5=8d65b556faeff73197138e5fbad0bf52CAS |

Beukema, J. J. (1980). Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea. I. The tellinid bivalve Macoma balthica. Netherlands Journal of Sea Research 14, 323–338.
Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea. I. The tellinid bivalve Macoma balthica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXksFyntL8%3D&md5=65c89b1b4f932d2a1da3f56cf4389887CAS |

Beukema, J. J. (1982). Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea. II. The edible cockle, Cerastoderma edule. Netherlands Journal of Sea Research 15, 391–405.
Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea. II. The edible cockle, Cerastoderma edule.Crossref | GoogleScholarGoogle Scholar |

Bianchi, C. N., and Morri, C. (1996). Ficopomatus reefs ‘ in the Po River Delta (northern Adriatic): their constructional dynamics, biology, and influences on the brackish-water biota. Marine Ecology (Berlin) 17, 51–66.
Ficopomatus reefs ‘ in the Po River Delta (northern Adriatic): their constructional dynamics, biology, and influences on the brackish-water biota.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVegs7g%3D&md5=4ab2cebbdfb357889d70ed7ff93ddd90CAS |

Bibby, R., Cleal-Harding, P., Rundle, S., Widdicombe, S., and Spicer, J. (2007). Ocean calcification disrupts induced defences in the intertidal gastropos Littorina littorea. Biology Letters 3, 699–701.
Ocean calcification disrupts induced defences in the intertidal gastropos Littorina littorea.Crossref | GoogleScholarGoogle Scholar |

Blanchard, D., and Bourget, E. (1999). Scales of coastal heterogeneity: influence on intertidal community structure. Marine Ecology Progress Series 179, 163–173.
Scales of coastal heterogeneity: influence on intertidal community structure.Crossref | GoogleScholarGoogle Scholar |

Bolbeth, M., Pardal, M. A., Lillebø, A. I., Azeiteiro, U., and Marques, J. C. (2003). Short- and long-term effects of eutrophication on the secondary production of an intertidal macrobenthic community. Marine Biology 143, 1229–1238.

Brey, T. (1999). Growth performance and mortality in aquatic benthic invertebrates. Advances in Marine Biology 35, 153–223.

Budd, J. W., Drummer, T. D., and Nalepa, F. (2001). Remote sensing of biotic effects: zebra mussels (Dreissena polymorpha) influence on water clarity in Saginaw Bay, Lake Huron. Limnology and Oceanography 46, 213–223.
Remote sensing of biotic effects: zebra mussels (Dreissena polymorpha) influence on water clarity in Saginaw Bay, Lake Huron.Crossref | GoogleScholarGoogle Scholar |

Canals, M., and Ballesteros, E. (1997). Production of carbonate particles by phytobenthic communities on the Mallorca–Menorca shelf, northwestern Mediterranean Sea. Deep-sea Research. Part II, Topical Studies in Oceanography 44, 611–629.
Production of carbonate particles by phytobenthic communities on the Mallorca–Menorca shelf, northwestern Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVKitb4%3D&md5=75795e05a5b135049e89404d1360e1baCAS |

Chauvaud, L., Thompson, J. K., Cloern, J. E., and Thouzeau, G. (2003). Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay. Limnology and Oceanography 48, 2086–2092.
Clams as CO2 generators: the Potamocorbula amurensis example in San Francisco Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvFagsL8%3D&md5=fbbd07844f5373eab1a88cd72c194cc6CAS |

Chave, K. E. (1964). Skeletal durability and preservation. In ‘Approaches to Palaeoecology’. (Eds J. Imbrie and N. Newell.) pp. 377–387. (Wiley: New York.)

Chave, K. E. (1967). Recent carbonate sediments: an unconventional view. Journal of Geological Education 15, 200–204.
| 1:CAS:528:DyaF1cXovV2itA%3D%3D&md5=f7777701fe9a546a0a8ade7735a5db73CAS |

Chen, C. T. A., and Borges, A. V. (2009). Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-sea Research. Part II. Topical Studies in Oceanography 56, 578–590.
Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXntVKjt78%3D&md5=f38411dcc568edb66b61175b6ab5b1e6CAS |

Chen, C. T. A., Andreev, A., Kim, K. R., and Yamamoto, M. (2004). Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean. Journal of Oceanography 60, 17–44.
Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVKgt7c%3D&md5=4abf8ddd8fbb6647fcf68406b7809793CAS |

Chisholm, J. R. M. (2000). Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnology and Oceanography 45, 1476–1484.
Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFymtrY%3D&md5=aa5544852e7c7002f54246ee2e5f498cCAS |

Chung, S., Lee, K., Feely, R. A., Sabine, C. L., Millero, F. J., Key, R. M., and Wanninkhof, R. (2003). Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry. Global Biogeochemical Cycles 17, .
Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry.Crossref | GoogleScholarGoogle Scholar |

Clavier, J., Castets, M. D., Bastian, T., Hily, C., Boucher, G., and Chauvaud, L. (2009). An amphibious mode of life in the intertidal zone: aerial and underwater contribution of Chthamalus montagui to CO2 fluxes. Marine Ecology Progress Series 375, 185–194.
An amphibious mode of life in the intertidal zone: aerial and underwater contribution of Chthamalus montagui to CO2 fluxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslansr4%3D&md5=f13800c6a3aa035900df800ea5679fbaCAS |

Copin Montégut, C., and Copin Montégut, G. (1999). Theoretical considerations about the reactions of calcification in sea water. Marine Chemistry 63, 213–224.
Theoretical considerations about the reactions of calcification in sea water.Crossref | GoogleScholarGoogle Scholar |

Cubillas, P., Kohler, S., Prieto, M. J., Chairat, C., and Oelkers, E. H. (2005). Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chemical Geology 216, 59–77.
Experimental determination of the dissolution rates of calcite, aragonite, and bivalves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1GntL0%3D&md5=97acd5bf0e3d0f07a697d90e0eb1925aCAS |

Cusson, M., and Bourget, E. (2005). Global patterns of macroinvertebrate production in marine benthic habitats. Marine Ecology Progress Series 297, 1–14.
Global patterns of macroinvertebrate production in marine benthic habitats.Crossref | GoogleScholarGoogle Scholar |

Davoult, D., Harlay, J., and Gentil, F. (2009). Contribution of a dense population of the brittle star Acrocnida brachiata (Montagu) to the biochemical fluxes of CO2 in a temperate coastal ecosystem. Estuaries and Coasts 32, 1103–1110.
Contribution of a dense population of the brittle star Acrocnida brachiata (Montagu) to the biochemical fluxes of CO2 in a temperate coastal ecosystem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSmtbbJ&md5=2062e54fe934e825654f23eb7078f05aCAS |

de Villiers, S. (2004). Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera. Marine Biology 144, 45–49.
Optimum growth conditions as opposed to calcite saturation as a control on the calcification rate and shell-weight of marine foraminifera.Crossref | GoogleScholarGoogle Scholar |

Eadie, J. M., and Keast, A. (1984). Resource heterogeneity and fish diversity in lakes. Canadian Journal of Zoology 62, 1689–1695.
Resource heterogeneity and fish diversity in lakes.Crossref | GoogleScholarGoogle Scholar |

Edyvean, R. G. J., and Ford, H. (1987). Growth rates of Lithophyllum incrustans (Corallinales, Rhodophyta) from south west Wales. British Phycological Journal 22, 139–146.
Growth rates of Lithophyllum incrustans (Corallinales, Rhodophyta) from south west Wales.Crossref | GoogleScholarGoogle Scholar |

Engle, V. D., and Summers, J. K. (1999). Latitudinal gradients in benthic community composition in western Atlantic estuaries. Journal of Biogeography 26, 1007–1023.
Latitudinal gradients in benthic community composition in western Atlantic estuaries.Crossref | GoogleScholarGoogle Scholar |

Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, J., and Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366.
Impact of anthropogenic CO2 on the CaCO3 system in the oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXls1egsbY%3D&md5=1694dab109aaebf9a5bfe8e86643fbbaCAS |

Findlay, H. S., Wood, H. L., Kendall, M. A., Spicer, J. L., Twitchett, R. J., and Widdicombe, S. (2009). Calcification, a physiological response to be considered in the context of the whole organism. Biogeosciences Discussions 6, 2267–2284.
Calcification, a physiological response to be considered in the context of the whole organism.Crossref | GoogleScholarGoogle Scholar |

Frankignoulle, M., Canon, C., and Gattuso, J. P. (1994). Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnology and Oceanography 39, 458–462.
Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXls1egsLk%3D&md5=be9f669df5abf8a93af88810a272daa4CAS |

Frankignoulle, M., Pichon, M., and Gattuso, J. P. (1995). Aquatic calcification as a source of carbon dioxide. In ‘Carbon Sequestration in the Biosphere. Vol 133’. (Ed. M. A. Beran.) pp. 265–271. (Springer-Verlag: Berlin.)

Freile, D., Milliman, J. D., and Hillis, C. (1995). Bank-edge Halimeda meadow, western Great Bahama Bank, and its sedimentary importance. Coral Reefs 14, 27–33.
Bank-edge Halimeda meadow, western Great Bahama Bank, and its sedimentary importance.Crossref | GoogleScholarGoogle Scholar |

Gangnery, A. (2003). Étude et modélisation de la dynamique des populations de bivalves en élevage (Crassostrea gigas et Mytilus galloprovincialis) dans le bassin de Thau (Méditerranée, France) et des ascidies solitaires associées. Thèse Montpellier III.

Gattuso, J. P., Frankignoulle, M., and Wollast, R. (1998). Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics 29, 405–434.
Carbon and carbonate metabolism in coastal aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar |

Gattuso, J. P., Allemand, D., and Frankignoulle, M. (1999a). Photosynthesis and calcification at cellular, organismal, and community levels in coral reefs: a review on interactions and control by carbonate chemistry. American Zoologist 39, 160–183.
| 1:CAS:528:DyaK1MXisVSlurc%3D&md5=b299e0c2dc54c4907ca40f6daa5936d1CAS |

Gattuso, J. P., Frankignoulle, M., and Smith, S. V. (1999b). Measurement of community metabolism and significance in the coral reef CO2 source-sink debate. Proceedings of the National Academy of Sciences, USA 96, 13 017–13 022.
Measurement of community metabolism and significance in the coral reef CO2 source-sink debate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Gmsro%3D&md5=36592d5a2f4bcd5859d0bfe9bac52033CAS |

Gazeau, F., Smith, S. V., Gentili, B., Frankignoulle, M., and Gattuso, J. P. (2004). The European coastal zone: characterization and first assessment of ecosystem metabolism. Estuarine, Coastal and Shelf Science 60, 673–694.
The European coastal zone: characterization and first assessment of ecosystem metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvV2rsbg%3D&md5=569979c501e612ddd75289015de1d0adCAS |

Genin, A., Dayton, P. K., Lonsdale, P. F., and Spiess, F. N. (1986). Corals on seamont peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61.
Corals on seamont peaks provide evidence of current acceleration over deep-sea topography.Crossref | GoogleScholarGoogle Scholar |

Golléty, C., Gentil, F., and Davoult, D. (2008). Secondary production calcification and CO2 fluxes in the cirripedes Chtamalus montagui and Elminius modestus. Oecologia 155, 133–142.
Secondary production calcification and CO2 fluxes in the cirripedes Chtamalus montagui and Elminius modestus.Crossref | GoogleScholarGoogle Scholar |

Green, M. A., and Aller, R. C. (2001). Early diagenesis of calcium carbonate in Long Island Sound sediments: benthic fluxes of Ca++ and minor elements during seasonal periods of net dissolution. Journal of Marine Research 59, 769–794.
Early diagenesis of calcium carbonate in Long Island Sound sediments: benthic fluxes of Ca++ and minor elements during seasonal periods of net dissolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xks12qsw%3D%3D&md5=8d6b1d8b39d12fe7d6e849b4a6082890CAS |

Guichard, F., and Bourget, E. (1998). Topographic heterogeneity hydrodynamics, and benthic community structure: a scale-dependant cascade. Marine Ecology Progress Series 171, 59–70.
Topographic heterogeneity hydrodynamics, and benthic community structure: a scale-dependant cascade.Crossref | GoogleScholarGoogle Scholar |

Hales, B. (2003). Respiration, dissolution, and the lysocline. Paleoceanography 18, 1099.
Respiration, dissolution, and the lysocline.Crossref | GoogleScholarGoogle Scholar |

Kochman, J., Bushbaum, C., Volkenborn, N., and Reise, K. (2008). Shift from native mussels to alien oysters: differential effects of ecosystem engineers. Journal of Experimental Marine Biology and Ecology 364, 1–10.
Shift from native mussels to alien oysters: differential effects of ecosystem engineers.Crossref | GoogleScholarGoogle Scholar |

Keir, R. S. (1980). The dissolution kinetics of biogenic calcium carbonates in seawater. Geochimica et Cosmochimica Acta 44, 241–252.
The dissolution kinetics of biogenic calcium carbonates in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXit1Wlt70%3D&md5=5e2605ee69c247faa0abb7800c9a4c34CAS |

Khalil, K., Rabouille, C., Gallinari, M., Soetaert, K., DeMaster, D. J., and Ragueneau, O. (2007). Constraining biogenic silica dissolution in marine sediments: a comparison between diagenetic models and experimental dissolution rates. Marine Chemistry 106, 223–238.
Constraining biogenic silica dissolution in marine sediments: a comparison between diagenetic models and experimental dissolution rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFSmurs%3D&md5=9062f05b3cb800fcd833c52f921aa758CAS |

Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J. P., Langdon, C., and Opdyke, B. N. (1999). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284, 118–120.
Geochemical consequences of increased atmospheric carbon dioxide on coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitlCntL4%3D&md5=0ed7478e074863349a5197497107f0d7CAS |

Langdon, C., Broecker, W. S., Hammond, D. E., Glenn, E., Fitzsimmons, K., Nelson, S. G., Peng, T., Hajdas, I., and Bonani, G. (2003). Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles 17, .
Effect of elevated CO2 on the community metabolism of an experimental coral reef.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1yjs70%3D&md5=ede40cfc5eaf6263972dea737a4d7571CAS |

Lebrato, M., Iglesias-Rodriguez, D., Feely, R., Greeley, D., Jones, D., Suarez-Bosche, N., Lampitt, R., Cartes, J., Green, D., and Alker, B. (2009). Global contribution of echinoderms to the marine carbon cycle: a re-assessment of the oceanic CaCO3 budget and the benthic compartments. Ecological Monographs 3, 441–467.

Lejart, M., Clavier, J., Chauvaud, L., and Hily, C. (2012). Respiration and calcification of Crassostrea gigas: contribution of an intertidal invasive species to coastal ecosystem CO2 fluxes. Estuaries and Coasts 35, 622–632.
Respiration and calcification of Crassostrea gigas: contribution of an intertidal invasive species to coastal ecosystem CO2 fluxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVWhtrs%3D&md5=b48083f1b748602699a3bb1adf3334fdCAS |

Lewis, J. R. (1964). ‘The Ecology of Rocky Shores.’ (English University Press: London.)

Liu, K. K., Atkinson, L., Chen, C. T. A., Gao, S., Hall, J., Macdonald, R. W., Talaue-McManus, L., and Quinones, R. A. (2000). Exploring continental margin carbon fluxes on a global scale. Eos, Transactions, American Geophysical Union 81, 641–644.
Exploring continental margin carbon fluxes on a global scale.Crossref | GoogleScholarGoogle Scholar |

Mackenzie, F. T., Lerman, A., and Andersson, A. J. (2004). Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences 1, 11–32.
Past and present of sediment and carbon biogeochemical cycling models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsVert7c%3D&md5=fdf6841ce647419b5a365908263210cdCAS |

Martin, S., and Gattuso, J. P. (2009). Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology 15, 2089–2100.
Response of Mediterranean coralline algae to ocean acidification and elevated temperature.Crossref | GoogleScholarGoogle Scholar |

Martin, S., Castets, M. D., and Clavier, J. (2006). Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquatic Botany 85, 121–128.
Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlsFOhsb0%3D&md5=5331f971ca000ef6c5feb84321a908e2CAS |

Martin, S., Thouzeau, G., Richard, M., Clavier, J., Chauvaud, L., and Jean, F. (2007). Benthic community respiration in areas impacted by the invasive mollusc, Crepidula fornicata L. Marine Ecology Progress Series 347, 51–60.
| 1:CAS:528:DC%2BD2sXhsVCgur7J&md5=5c0070a4fe295f3d0750ead9bed32d30CAS |

Martin, S., Rodolfo-Metalpa, R., Ransome, E., Rowley, S., Buia, M. C., Gattuso, J. P., and Hall-Spencer, J. (2008). Effects of naturally acidified seawater on seagrass calcareous epibionts. Biology Letters 4, 689–692.
Effects of naturally acidified seawater on seagrass calcareous epibionts.Crossref | GoogleScholarGoogle Scholar |

McDonald, M. R., McClintock, J. B., Amsler, C. D., Rittschof, D., Angus, R. A., Orihuela, B., and Lutostanski, K. (2009). Effects of ocean calcification over the life history of the barnacle Amphibalanus amphitrite. Marine Ecology Progress Series 385, 179–187.
Effects of ocean calcification over the life history of the barnacle Amphibalanus amphitrite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFegsLg%3D&md5=38a741b23be46d4f269fabc33910d1b7CAS |

McNeil, B. I., Matear, R. J., and Barnes, D. J. (2004). Coral reef calcification and climate change: the effect of ocean warming. Geophysical Research Letters 31, L22309.
Coral reef calcification and climate change: the effect of ocean warming.Crossref | GoogleScholarGoogle Scholar |

Medernach, L., Jordana, E., Grémare, A., Nozais, C., Charles, F., and Amouroux, J. M. (2000). Population dynamics, secondary production and calcification in a Mediterranean population of Ditrupa arietina (Annelida: Polychaeta). Marine Ecology Progress Series 199, 171–184.
Population dynamics, secondary production and calcification in a Mediterranean population of Ditrupa arietina (Annelida: Polychaeta).Crossref | GoogleScholarGoogle Scholar |

Middelburg, J. J., Duarte, C. M., and Gattuso, J. P. (2005). Respiration in coastal benthic communities. In ‘Respiration in Aquatic Ecosystems’. (Eds P. A. Del Giorgio and L. P. J. Williams.) pp. 206–224. (Oxford University Press: Oxford, UK.)

Migné, A., Davoult, D., and Gattuso, J. P. (1998). Calcium carbonate production of a dense population of the brittle star Ophiothrix fragilis (Echinodermata: Ophiuroidea): role in the carbon cycle of a temperate coastal ecosystem. Marine Ecology Progress Series 173, 305–308.
Calcium carbonate production of a dense population of the brittle star Ophiothrix fragilis (Echinodermata: Ophiuroidea): role in the carbon cycle of a temperate coastal ecosystem.Crossref | GoogleScholarGoogle Scholar |

Milliman, J. D. (1993). Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochemical Cycles 7, 927–957.
Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhvF2ls7Y%3D&md5=f02910240e464b5da586f23ce0264c05CAS |

Payri, C. E. (2000). Production primaire et calcification des algues benthiques en milieu corallien. Oceanis 26, 427–463.
| 1:CAS:528:DC%2BD3sXos1Gjug%3D%3D&md5=94b8eeda6a385a514b0424f52d0da393CAS |

Pennisi, E. (2009). Calcification rates drop in Australian reefs. Science 323, 27.
Calcification rates drop in Australian reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksFOisg%3D%3D&md5=3c64406548ac6d704a08eae3b9acefa0CAS |

Pokrovsky, O. S., Golubev, S. V., and Schott, J. (2005). Dissolution kinetics of calcite, dolomite and magnesite at 25 degrees C and 0 to 50 atm pCO2. Chemical Geology 217, 239–255.
Dissolution kinetics of calcite, dolomite and magnesite at 25 degrees C and 0 to 50 atm pCO2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktVahsrw%3D&md5=06e82b2f8a8cc69e4ea088389509fbd2CAS |

Potin, P., Floc’h, J. Y., Augris, C., and Cabioch, J. (1990). Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France. Hydrobiologia 204–205, 263–267.
Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France.Crossref | GoogleScholarGoogle Scholar |

Rees, S. A., Opdyke, B. N., Wilson, P. A., and Fifield, L. K. (2005). Coral reef sedimentation on Rodrigues and the western Indian Ocean and its impact on the carbon cycle. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences 363, 101–120.
Coral reef sedimentation on Rodrigues and the western Indian Ocean and its impact on the carbon cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVGmt7w%3D&md5=9587cd1ee20e56cd5f06a6c1d2393697CAS |

Ries, J. B., Cohen, A. L., and McCorkle, D. C. (2009). Marine calcifiers exhibit mixed responses to CO2 induced ocean acidification. Geology 37, 1131–1134.
| 1:CAS:528:DC%2BC3cXjvVartg%3D%3D&md5=2103ccec9b586c727495cd423c46569fCAS |

Schwinghamer, P., Hargrave, B., Peer, D., and Hawkins, C. M. (1986). Partitioning of production and respiration among size groups of organisms in an intertidal community. Marine Ecology Progress Series 31, 131–142.
Partitioning of production and respiration among size groups of organisms in an intertidal community.Crossref | GoogleScholarGoogle Scholar |

Smith, S. V. (1972). Production of calcium carbonate on the mainland shelf of southern California. Limnology and Oceanography 17, 28–41.
Production of calcium carbonate on the mainland shelf of southern California.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE38Xkt1aksr8%3D&md5=99b6bd587eed4a5b00bdfd807f3e2bb9CAS |

Smith, S. V., and Hollibaugh, J. T. (1993). Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics 31, 75–89.
Coastal metabolism and the oceanic organic carbon balance.Crossref | GoogleScholarGoogle Scholar |

Smith, A. M., and Nelson, C. S. (2003). Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Science Reviews 63, 1–31.
| 1:CAS:528:DC%2BD3sXnsVelsL0%3D&md5=7b49a2719682243e9f614af977faced9CAS |

Steele, J. H. (1974). ‘The Structure of Marine Ecosystems.’ (Harvard University Press: Cambridge, MA.)

Strickland, J. D. H., and Parsons, T. R. (1968). ‘A Practical Handbook of Seawater analysis.’ (Fisheries Research Board of Canada: Ottawa.)

Stephenson, T. A., and Stephenson, A. (1972). ‘Life between Tide marks on Rocky Shores.’ (W.H. Freeman: San Francisco, CA, USA.)

Van Hoey, G., Vincx, M., and Degraer, S. (2005). Small- to large-scale geographical patterns within the macrobenthic Abra alba community. Estuarine, Coastal and Shelf Science 64, 751–763.
Small- to large-scale geographical patterns within the macrobenthic Abra alba community.Crossref | GoogleScholarGoogle Scholar |

Walker, D. I., and Woelkerling, W. J. (1988). Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia. Marine Ecology Progress Series 43, 71–77.
Quantitative study of sediment contribution by epiphytic coralline red algae in seagrass meadows in Shark Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXit1Knsb0%3D&md5=787328a65aed80d46a366d49796823f8CAS |

Walter, L. M., and Morse, J. W. (1984). Reactive surface are of skeletal carbonates during dissolution: effect of grain size. Journal of Sedimentary Petrology 54, 1081–1090.
| 1:CAS:528:DyaL2MXhtFKqsbg%3D&md5=a1ba727f9d8a092f88c2ad8ea39ae3a9CAS |

Ware, J. R., Smith, S. V., and Reaka-Kudla, M. L. (1992). Coral reefs: sources or sinks of atmospheric CO2. Coral Reefs 11, 127–130.
Coral reefs: sources or sinks of atmospheric CO2.Crossref | GoogleScholarGoogle Scholar |

Wilson, R. W., Millero, F. J., Taylor, J. R., Walsh, P. J., Christensen, V., Jennings, S., and Grosell, J. (2009). Contribution of fish to the marine inorganic carbon cycle. Science 323, 359–362.
Contribution of fish to the marine inorganic carbon cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXktlCjuw%3D%3D&md5=2bfd15ebf25d329e00544bede54cae2cCAS |

Wollast, R., Garreu, R. M., and MacKenzie, F. T. (1980). Calcite-seawater reactions in ocean surface waters. American Journal of Science 280, 831–848.
Calcite-seawater reactions in ocean surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXntVyrug%3D%3D&md5=bcea30dc78a3afbee3ddda3bed1a99e4CAS |

Wood, H. L., Spicer, J. I., and Widdicombe, S. (2008). Ocean acidification may increase calcification rates, but at a cost. Proceedings of the Royal Society of London. Series B. Biological Sciences 275, 1767–1773.
Ocean acidification may increase calcification rates, but at a cost.Crossref | GoogleScholarGoogle Scholar |