Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Can large branchiopods shape microcrustacean communities in Mediterranean temporary wetlands?

Aline Waterkeyn A B D , Patrick Grillas B , Maria Anton-Pardo C , Bram Vanschoenwinkel A and Luc Brendonck A
+ Author Affiliations
- Author Affiliations

A Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium.

B Tour du Valat, Research Center for Mediterranean Wetlands, Le Sambuc, 13200 Arles, France.

C Department of Microbiology and Ecology, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.

D Corresponding author. Email: aline.waterkeyn@bio.kuleuven.be

Marine and Freshwater Research 62(1) 46-53 https://doi.org/10.1071/MF10147
Submitted: 17 June 2010  Accepted: 18 October 2010   Published: 18 January 2011

Abstract

It was recently suggested that large branchiopods may play a keystone role in temporary aquatic habitats. Using a microcosm experiment manipulating microcrustacean communities of Mediterranean temporary wetlands (Camargue, Southern France), we tested the following hypotheses: (i) large branchiopods (the notostracan Triops cancriformis and the anostracan Chirocephalus diaphanus) can limit microcrustacean densities through both competition and predation; (ii) notostracans create high suspended-matter concentrations through bioturbation, which can negatively impact microcrustaceans; and (iii) the outcome of these biotic interactions is more detrimental at high salinities. We found a strong predatory impact of T. cancriformis on active microcrustacean populations, but also on dormant populations through the consumption of resting eggs. They also preyed on anostracans and their conspecifics and can indirectly have a negative effect on microcrustaceans through bioturbation, probably by impeding filtering capacities. The presence of C. diaphanus also limited most microcrustacean groups, probably through competition and/or predation. We did not find a significant effect of the tested salinity range (0.5–2.5 g L–1) on the biotic interactions. Our study shows that large branchiopods can shape microcrustacean communities under a wide range of environmental conditions and confirms their potential for a keystone role, especially one of notostracans as top predators.

Additional keywords: Anostraca, bioturbation, interference competition, predation, Triops.


References

Alonso  M. (1996). ‘Fauna Iberica Vol. 7, Crustacea Branchiopoda.’ (Museo Nacional de Ciencias Naturales (CSIC): Madrid.)

Bengtsson, J. (1993). Interspecific competition and determinants of extinction in experimental populations of three rockpool Daphnia species. Oikos 67, 451–464.
Interspecific competition and determinants of extinction in experimental populations of three rockpool Daphnia species.Crossref | GoogleScholarGoogle Scholar |

Boix, D., Sala, J., Gascon, S., and Brucet, S. (2006). Predation in a temporary pond with special attention to the trophic role of Triops cancriformis (Crustacea : Branchiopoda : Notostraca). Hydrobiologia 571, 341–353.
Predation in a temporary pond with special attention to the trophic role of Triops cancriformis (Crustacea : Branchiopoda : Notostraca).Crossref | GoogleScholarGoogle Scholar |

Brendonck, L., and De Meester, L. (2003). Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491, 65–84.
Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment.Crossref | GoogleScholarGoogle Scholar |

Brendonck  L., and Williams  W. D. (2000). Biodiversity in wetlands of dry regions (drylands). In ‘Biodiversity in Wetlands: Assessment, Function and Conservation’. (Eds B. Gopal, W. J. Junk and J. A. Davis.) pp. 181–194. (Backhuys Publishers: Leiden.)

Brendonck, L., Michels, E., De Meester, L., and Riddoch, B. (2002). Temporary pools are not ‘enemy-free’. Hydrobiologia 486, 147–159.
Temporary pools are not ‘enemy-free’.Crossref | GoogleScholarGoogle Scholar |

Brock, M. A., Nielsen, D. L., and Crosslé, K. (2005). Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshwater Biology 50, 1376–1390.
Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes.Crossref | GoogleScholarGoogle Scholar |

Browman, H. I., Kruse, S., and O’Brien, W. J. (1989). Foraging behaviors of the predaceous cladoceran, Leptodora kindti, and escape responses of their prey. Journal of Plankton Research 11, 1075–1088.
Foraging behaviors of the predaceous cladoceran, Leptodora kindti, and escape responses of their prey.Crossref | GoogleScholarGoogle Scholar |

Brucet, S., Boix, D., Quintana, X. D., Jensen, E., Nathansen, L. W., et al. (2010). Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change. Limnology and Oceanography 55, 1697–1711.
Factors influencing zooplankton size structure at contrasting temperatures in coastal shallow lakes: implications for effects of climate change.Crossref | GoogleScholarGoogle Scholar |

Butler  N. M. (1996). Effects of sediment loading on food perception and ingestion by freshwater copepods. In ‘Zooplankton Sensory Ecology and Physiology’. (Eds P. H. D. Lenz, K. Hartline, J. E. Purcell and D. L. MacMillan.) pp. 315–322. (Gordon and Breach Publishers: Amsterdam.)

Cáceres, C. E., and Hairston, N. G. (1998). Benthic pelagic coupling in planktonic crustaceans: the role of the benthos. Archives Hydrobiologica Special Issues Advanced Limnology 52, 163–174..

Chandramohan, G., Arivoli, S., and Venkatesan, P. (2008). Effect of salinity on the predatory performance of Diplonychus rusticus (Fabricius). Journal of Environmental Biology 29, 287–290..
| 1:STN:280:DC%2BD1cjgslyqsw%3D%3D&md5=b38b2e47c89e0e47bb7cbd0990fae9c1CAS | 18972679PubMed |

De Roeck, E. R. M., Artois, T., and Brendonck, L. (2005). Consumptive and non-consumptive effects of turbellarian (Mesostoma sp.) predation on anostracans. Hydrobiologia 542, 103–111.
Consumptive and non-consumptive effects of turbellarian (Mesostoma sp.) predation on anostracans.Crossref | GoogleScholarGoogle Scholar |

Dumont  H. J., and Negrea  S. V. (2002). ‘Introduction to the Class Branchiopoda.’ (Backhuys Publishers: Leiden.)

Dumont, H. J., Nandini, S., and Sarma, S. S. S. (2002). Cyst ornamentation in aquatic invertebrates: a defence against egg-predation. Hydrobiologia 486, 161–167.
Cyst ornamentation in aquatic invertebrates: a defence against egg-predation.Crossref | GoogleScholarGoogle Scholar |

Grigarick, A., Lange, W. H., and Finfrock, D. C. (1961). Control of tadpole shrimp, Triops longicaudatus, in California rice fields. Journal of Economic Entomology 54, 36–40..

Hairston, N. G., Vanbrunt, R. A., Kearns, C. M., and Engstrom, D. R. (1995). Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 76, 1706–1711.
Age and survivorship of diapausing eggs in a sediment egg bank.Crossref | GoogleScholarGoogle Scholar |

Jawahar, A., Sarma, S., Murugan, G., and Dumont, H. J. (1996). Effect of zooplankton type and abundance on prey consumption by the fairy shrimp, Streptocephalus proboscideus (Anostraca : Crustacea). Hydrobiologia 319, 191–202.
Effect of zooplankton type and abundance on prey consumption by the fairy shrimp, Streptocephalus proboscideus (Anostraca : Crustacea).Crossref | GoogleScholarGoogle Scholar |

Jocqué, M., Vanschoenwinkel, B., and Brendonck, L. (2010). Anostracan monopolisation of early successional phases in temporary waters? Archiv fuer Hydrobiologie 176, 127–132..

Kirk, K. L. (1991). Inorganic particles alter competition in grazing plankton: the role of selective feeding. Ecology 72, 915–923.
Inorganic particles alter competition in grazing plankton: the role of selective feeding.Crossref | GoogleScholarGoogle Scholar |

Luzier, J. M., and Summerfelt, R. C. (1997). Experimental demonstration of the effects of clam shrimp on turbidity of microcosms. Progressive Fish-Culturist 59, 68–70.
Experimental demonstration of the effects of clam shrimp on turbidity of microcosms.Crossref | GoogleScholarGoogle Scholar |

Mermillod-Blondin, F., and Rosenberg, R. (2006). Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Science 68, 434–442..
| 1:CAS:528:DC%2BD2sXhsV2rt74%3D&md5=098b1765b9fc98d6d0402a9118a9fa1aCAS |

Pont, D., and Vaquer, A. (1986). The ecological role of the phyllopod Triops cancriformis (Bosc) in the biocoenosis of ricefields (Camargue, France). Acta Oecologica – Oecologia Generalis 7, 75–88..

Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., et al. (1996). Challenges in the quest for keystones. Bioscience 46, 609–620.
Challenges in the quest for keystones.Crossref | GoogleScholarGoogle Scholar |

Sánchez, B., and Angeler, D. G. (2007). Can fairy shrimps (Crustacea : Anostraca) structure zooplankton communities in temporary ponds? Marine and Freshwater Research 58, 827–883.
Can fairy shrimps (Crustacea : Anostraca) structure zooplankton communities in temporary ponds?Crossref | GoogleScholarGoogle Scholar |

Sarma, S. S. S., and Nardini, S. (2002). Studies on functional response and prey selection using zooplankton in the anostracan Chirocephalus diaphanus Prevost. Hydrobiologia 486, 169–174.
Studies on functional response and prey selection using zooplankton in the anostracan Chirocephalus diaphanus Prevost.Crossref | GoogleScholarGoogle Scholar |

Sarma, S. S. S., Elguea-Sanchez, B., and Nandini, S. (2002). Effect of salinity on competition between the rotifers Brachionus rotundiformis Tschugunoff and Hexarthra jenkinae (De Beauchamp) (Rotifera). Hydrobiologia 474, 183–188.
Effect of salinity on competition between the rotifers Brachionus rotundiformis Tschugunoff and Hexarthra jenkinae (De Beauchamp) (Rotifera).Crossref | GoogleScholarGoogle Scholar |

Scheffer, M., Hosper, S. H., Meijer, M. L., Moss, B., and Jeppesen, E. (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8, 275–279.
Alternative equilibria in shallow lakes.Crossref | GoogleScholarGoogle Scholar |

Sih, A., Crowley, P., Mcpeek, M., Petranka, J., and Strohmeier, K. (1985). Predation, competition, and prey communities – a review of field experiments. Annual Review of Ecology and Systematics 16, 269–311.
Predation, competition, and prey communities – a review of field experiments.Crossref | GoogleScholarGoogle Scholar |

Su, T., and Mulla, M. S. (2002). Factors affecting egg hatch of tadpole shrimp Triops newberryi, a potential biological control agent of immature mosquitoes. Biological Control 23, 18–26.
Factors affecting egg hatch of tadpole shrimp Triops newberryi, a potential biological control agent of immature mosquitoes.Crossref | GoogleScholarGoogle Scholar |

Talling  J. F., and Driver  D. (1963). Some problems in the extraction of chlorophyll a in phytoplankton. In ‘Proceedings on Primary Productivity Measurement, Marine and Freshwater’. (Ed. M. Doty.) pp. 142–146. (US Atomic Energy Engineering Commission: Honolulu.)

Thiéry, A. (1988). Triops Schrank, 1903 et Lepidurus Leach, 1816, Crustacés Branchiopodes Notostracés. Documents pour un Atlas Zoogéographique du Languedoc-Roussillon 33, 1–4..

Viitasalo, S. (2007). Effects of bioturbation by three macrozoobenthic species and predation by necto-benthic mysids on cladoceran benthic eggs. Marine Ecology Progress Series 336, 131–140.
Effects of bioturbation by three macrozoobenthic species and predation by necto-benthic mysids on cladoceran benthic eggs.Crossref | GoogleScholarGoogle Scholar |

Walton, W. E. (2001). Effects of Triops newberryi (Notostraca : Triopsidae) on aquatic insect communities in ponds in the Colorado Desert of Southern California. Israel Journal of Zoology 47, 491–512.
Effects of Triops newberryi (Notostraca : Triopsidae) on aquatic insect communities in ponds in the Colorado Desert of Southern California.Crossref | GoogleScholarGoogle Scholar |

Waterkeyn  A. (2009). Community structuring processes in Mediterranean temporary wetlands. Ph.D. Thesis, Katholieke Universiteit, Leuven.

Waterkeyn, A., Grillas, P., Vanschoenwinkel, B., and Brendonck, L. (2008). Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53, 1808–1822.
Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKisLnE&md5=0bafe0586abf988fda71b7c52ff0dce3CAS |

Waterkeyn, A., Grillas, P., De Roeck, E. R. M., Boven, L., and Brendonck, L. (2009). Assemblage structure and dynamics of large branchiopods in Mediterranean temporary wetlands: patterns and processes. Freshwater Biology 54, 1256–1270.
Assemblage structure and dynamics of large branchiopods in Mediterranean temporary wetlands: patterns and processes.Crossref | GoogleScholarGoogle Scholar |

Waterkeyn, A., Vanschoenwinkel, B., Grillas, P., and Brendonck, L. (2010). Effect of salinity on seasonal community patterns of Mediterranean temporary wetland crustaceans: a mesocosm study. Limnology and Oceanography 55, 1712–1722.
Effect of salinity on seasonal community patterns of Mediterranean temporary wetland crustaceans: a mesocosm study.Crossref | GoogleScholarGoogle Scholar |

Wiggins, G. B., Mackayn, R. J., and Smith, I. M. (1980). Evolutionary and ecological strategies of animals in annual temporary pools. Archiv fuer Hydrobiologie 58, 97–206..

Yee, S. H., Willig, M. R., and Moorhead, D. L. (2005). Tadpole shrimp structure macroinvertebrate communities in playa lake microcosms. Hydrobiologia 541, 139–148.
Tadpole shrimp structure macroinvertebrate communities in playa lake microcosms.Crossref | GoogleScholarGoogle Scholar |

Zaret  T. M. (1980). ‘Predation and Freshwater Communities.’ (Yale University Press: New Haven.)