Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Climate-driven range changes in Tasmanian intertidal fauna

Nicole R. Pitt A D , Elvira S. Poloczanska B and Alistair J. Hobday A C
+ Author Affiliations
- Author Affiliations

A School of Zoology, University of Tasmania, Hobart, Tas. 7001, Australia.

B Climate Adaptation Flagship, CSIRO Marine and Atmospheric Research, PO Box 120, Cleveland, Qld 4163, Australia.

C Climate Adaptation Flagship, CSIRO Marine and Atmospheric Research, Hobart, Tas. 7001, Australia.

D Corresponding author. Email: nrpitt@utas.edu.au

Marine and Freshwater Research 61(9) 963-970 https://doi.org/10.1071/MF09225
Submitted: 7 September 2009  Accepted: 29 January 2010   Published: 23 September 2010

Abstract

The south-eastern coast of Australia is recognised as a climate-change hotspot; warming over the past 50 years has exceeded the global average. The marine fauna in the region is responding to this warming with several subtidal species showing a pole-ward range expansion. We provide the first evidence for a similar response in intertidal invertebrates, on the basis of surveys from the eastern coast of Tasmania in 2007–2008 that replicated a set from the 1950s. Of 29 species used in the analysis, 55% were detected further south than in the 1950s. The average minimum movement of the southern (pole-ward) range edges was 116 km (range 20–250 km), representing a rate of ∼29 km per decade for a warming rate of 0.22°C per decade. Barnacles and gastropods showed the greatest range extensions, with one species absent from Tasmania in the 1950s, the giant rock barnacle, Austromegabalanus nigrescens, now recorded widely along the eastern coast of Tasmania. The distance that the southern (pole-ward) range limit moved south for each species was not related to a qualitative dispersal potential index. Local extinction of some species in north-eastern Tasmania may also occur in the coming decades.

Additional keywords: climate change, distribution change, latitudinal range, pole-ward movement.


Acknowledgements

The Department of Climate Change provided funds for this project and a student stipend. We gratefully acknowledge several volunteers that helped in the field, namely Tom Berli, Jonah Yick and Scott Oost. Review and comments by Anthony Richardson, Greg Skilleter, Andrew Boulton, Jessica Farley, Ruth O’Riordan and an anonymous referee improved the final manuscript.


References

Barry, J. P. , Baxter, C. H. , Sagarin, R. D. , and Gilman, S. E. (1995). Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267, 672–675.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Edgar G. J. (2000). ‘Australian Marine Life: Plants and Animals of the Temperate Waters.’ 2nd edn. (New Holland Publishers: Sydney.)

Hawkins, S. J. , Moore, P. J. , Burrows, M. T. , Poloczanska, E. S. , and Mieszkowska, N. , et al. (2008). Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Climate Research 37, 123–133.
Crossref | GoogleScholarGoogle Scholar | Hobday A. J., Okey T. A., Poloczanska E. S., Kunz T. J., and Richardson A. J. (Eds) (2007). Impacts of climate change on Australian marine life. CSIRO Marine and Atmospheric Research. Report to the Australian Greenhouse Office, Canberra, Australia. Available at http://www.greenhouse.gov.au/impacts/publications/marinelife.htmln [verified February 2010].

IPCC (2007). Summary for policymakers. In ‘Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden and C. E. Hanson.) pp. 7–22. (Cambridge University Press: Cambridge, UK.)

Lima, F. P. , Queiroz, N. , Ribeiro, P. A. , Hawkins, S. J. , and Santos, A. M. (2006). Recent changes in the distribution of a marine gastropod, Patella rustica Linnaeus, 1758, and their relationship to unusual climatic events. Journal of Biogeography 33, 812–822.
Crossref | GoogleScholarGoogle Scholar |

Ling, S. D. , Johnson, C. R. , Ridgway, K. , Hobday, A. J. , and Haddon, M. (2009). Climate driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology 15, 719–731.
Crossref | GoogleScholarGoogle Scholar |

McCarty, J. (2001). Ecological consequences of recent climate change. Conservation Biology 15, 320–331.
Crossref | GoogleScholarGoogle Scholar |

Mieszkowska, N. , Kendall, M. A. , Hawkins, S. J. , Leaper, R. , and Williamson, P. , et al. (2006). Changes in the range of some common rocky shore species in Britain – a response to climate change? Hydrobiologia 555, 241–251.
Crossref | GoogleScholarGoogle Scholar |

Parmesan, C. , and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Perry, A. L. , Low, P. J. , Ellis, J. R. , and Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. Science 308, 1912–1915.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Phillips, J. A. (2001). Marine macroalgal biodiversity hotspots: why is there high species richness and endemism in southern Australian marine benthic flora? Biodiversity and Conservation 10, 1555–1577.
Crossref | GoogleScholarGoogle Scholar |

Poloczanska, E. S. , Babcock, R. C. , Butler, A. , Hobday, A. J. , and Hoegh-Guldberg, O. , et al. (2007). Climate change and Australian marine life. Oceanography and Marine Biology Annual Review 45, 409–480.


Poloczanska, E. S. , Hawkins, S. J. , Southward, A. J. , and Burrows, M. T. (2008). Modelling the response of populations of competing species to climate change. Ecology 89, 3138–3149.
Crossref | GoogleScholarGoogle Scholar |

Richardson, A. J. , and Poloczanksa, E. S. (2008). Under-resourced, under threat. Science 320, 1294–1295.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Ridgway, K. R. (2007). Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophysical Research Letters 34, L13613.
Crossref | GoogleScholarGoogle Scholar |

Root, T. L. , Price, J. T. , Hall, K. R. , Schneider, S. H. , and Rosenzweig, C. , et al. (2003). Fingerprints of global warming on wild animals and plants. Nature 421, 57–60.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Rosenzweig, C. , Karoly, D. , Vicarelli, M. , Neofotis, P. , and Wu, Q. , et al. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Simkanin, C. , Power, A. , Myers, A. , McGrath, D. , and Southward, A. , et al. (2005). Using historical data to detect changes in the abundance of intertidal species on Irish shores. Journal of the Marine Biological Association of the United Kingdom 85, 1329–1340.
Crossref | GoogleScholarGoogle Scholar |

Southward, A. J. , and Crisp, D. J. (1954). The distribution of certain intertidal animals around the Irish coast. Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science 57, 1–29.


Southward, A. J. , Langmead, O. , Hardman-Mountford, N. J. , Aiken, J. , and Boalch, G. T. , et al. (2005). Long-term oceanographic and ecological research in the Western English Channel. Advances in Marine Biology 47, 1–105.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stuart-Smith, R. D. , Barrett, N. S. , Stevenson, D. G. , and Edgar, G. J. (2009). Stability in temperate reef communities over a decadal time scale despite concurrent ocean warming. Global Change Biology ,
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thresher, R. , Proctor, C. , Ruiz, G. , Gurney, R. , and MacKinnon, R. , et al. (2003). Invasion dynamics of the European shore crab, Carcinus maenas, in Australia. Marine Biology 142, 867–876.


Tingley, M. W. , and Beissinger, S. R. (2009). Detecting range shifts from historical species occurrences: new perspectives on old data. Trends in Ecology & Evolution 24, 625–633.
Crossref | GoogleScholarGoogle Scholar |

Walther, G. R. , Post, E. , Convey, P. , Menzel, A. , and Parmesan, C. , et al. (2002). Ecological responses to recent climate change. Nature 416, 389–395.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Waters, J. M. , King, T. M. , O’Loughlin, P. M. , and Spencer, H. G. (2005). Phylogeographic disjunction in abundant high dispersal littoral gastropods. Molecular Ecology 14, 2789–2802.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Wethey, D. S. (1983). Geographic limits and local zonation: the barnacles Semibalanus (Balanus) and Chthamalus in New England. The Biological Bulletin 165, 330–341.
Crossref | GoogleScholarGoogle Scholar |

Zacherl, D. , Gaines, S. D. , and Lonhart, S. I. (2003). The limits to biogeographical distributions: insights from the northward range extension of the marine snail, Kelletia kelletii (Forbes, 1852). Journal of Biogeography 30, 913–924.
Crossref | GoogleScholarGoogle Scholar |