Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Treating causes not symptoms: restoration of surface–groundwater interactions in rivers

Tamao Kasahara A E , Thibault Datry B , Michael Mutz C and Andrew J. Boulton D
+ Author Affiliations
- Author Affiliations

A Department of Watershed Sciences, Utah State University, 5210 Old Main Hill, Logan, UT 84321, USA.

B Aquatic Ecosystem Biology, CEMAGREF-Lyon, 3 bis quai Chauveau, F-69336 Lyon cedex 09, France.

C Department of Freshwater Conservation, Brandenburg University of Technology Cottbus, Seestraße 45, D-15526 Bad Saarow, Germany.

D Ecosystem Management, University of New England, Armidale, NSW 2351, Australia.

E Corresponding author. The present address: Faculty of Environment and Resource Studies, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand. Email: tamao.kasahara@usu.edu

Marine and Freshwater Research 60(9) 976-981 https://doi.org/10.1071/MF09047
Submitted: 6 March 2009  Accepted: 27 July 2009   Published: 22 September 2009

Abstract

Many river restoration projects seek to address issues associated with impaired hydrological and ecological connectivity in longitudinal (e.g. effects of dams, weirs) or lateral (e.g. alienated floodplain) dimensions. Efforts to restore the vertical dimension of impaired stream–groundwater exchange are rare, hampered by limited understanding of the factors controlling this linkage in natural alluvial rivers. We propose a simplified two-axis model of the ‘primary drivers’ (sediment structure and vertical hydraulic gradient) of stream–groundwater exchange that acknowledges their interaction and provides a practical template to help researchers and river managers pose hypothesis-driven solutions to restoration of damaged or lost vertical connectivity. Many human activities impact on one or both of these drivers, and we review some of the tools available for treating the causes (rather than symptoms) in impacted stream reaches. For example, creating riffle-pool sequences along stream reaches will enhance vertical hydraulic gradient, whereas flushing flows can remove clogging layers and sustain sediment permeability. Our model is a first step to specifying mechanisms for recovery of lost vertical connectivity. Assessing results of river restoration using this approach at reach to catchment scales will provide scientific insights into the interplay of hydrology, fluvial geomorphology and river ecosystem function at appropriately broad scales.

Additional keywords: conservation, groundwater, hydrological exchange, hyporheic zone, river health, river restoration, sediment structure.


Acknowledgements

We thank Scott Larned for participating in early discussions and two anonymous referees for useful comments on an earlier draft.


References

Blaschke, A. , Steiner, K.-H. , Schmalfuß, R. , Gutknecht, D. , and Sengschmitt, D. (2003). Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. International Review of Hydrobiology 88, 397–413.
Crossref | GoogleScholarGoogle Scholar | Gibert J., Stanford J. A., Dole-Olivier M.-J., and Ward J. V. (1994). Basic attributes of groundwater ecosystems and prospects for research. In ‘Groundwater Ecology’. (Eds J. Gibert, D. L. Danielopol and J. A. Stanford.) pp. 7–40. (Academic Press: San Diego, CA.)

Gooseff, M. N. , McKnight, D. M. , Lyons, W. B. , and Blum, A. E. (2002). Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater stream in the McMurdo Dry Valleys. Water Resources Research 38, W1279.
Crossref | GoogleScholarGoogle Scholar | Jones J. J., and Mulholland P. (Eds) (2000). ‘Streams and Ground Waters.’ (Academic Press: New York.)

Junk, W. J. , Bayley, P. B. , and Sparks, R. E. (1989). The flood pulse concept in river floodplain systems. Special Publication of the Canadian Journal of Fisheries and Aquatic Sciences 106, 110–127.
Montgomery D. R., Collins B. D., Buffington J. M., and Abbe T. B. (2003). Geomorphic effects of wood in rivers. In ‘The Ecology and Management of Wood in World Rivers’. (Eds S. V. Gregory, K. L. Boyer and A. M. Gurnell.) pp. 21–47. (American Fisheries Society: Bethesda, MD.)

Mutz, M. (2000a). Near-bed flow of a quasi-natural lowland stream. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie. 27, 2444–2447.


Mutz, M. (2000b). Influences of wood on flow patterns and channel morphology in a low energy sand-bed stream reach. Internationale Revue der Gesamten Hydrobiologie 85, 107–121.


Mutz, M. , and Rohde, A. (2003). Processes of surface-subsurface water exchange in a low energy sand-bed stream. Internationale Revue der Gesamten Hydrobiologie 88, 290–303.


Mutz, M. , Kalbus, E. , and Meinecke, S. (2007). Effect of instream wood on vertical water flux in low-energy sand bed flume experiments. Water Resources Research 43, W10424.
Crossref | GoogleScholarGoogle Scholar |

Nilsson, C. , Reidy, C. A. , Dynesius, M. , and Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Nyberg, L. , Calles, D. , and Greenberg, L. (2008). Impact of short-term regulation on hyporheic water quality in a boreal river. River Research and Applications 24, 407–419.
Crossref | GoogleScholarGoogle Scholar |

Packman, A. I. , and MacKay, J. S. (2003). Interplay of stream-subsurface exchange, clay particle deposition, and streambed evolution. Water Resources Research 39, 1097.
Crossref | GoogleScholarGoogle Scholar |

Palmer, M. A. , Bernhardt, E. S. , Allan, J. D. , Lake, P. S. , and Alexander, G. , et al. (2005). Standards for ecologically successful river restoration. Journal of Applied Ecology 42, 208–217.
Crossref | GoogleScholarGoogle Scholar |

Pasternack, G. B. , Wang, C. L. , and Merz, J. E. (2004). Application of a 2D hydrodynamic model to design of reach-scale spawning gravel replenishment on the Mokelumne River, California. River Research and Applications 20, 205–225.
Crossref | GoogleScholarGoogle Scholar |

Rehg, K. J. , Packman, A. I. , and Ren, J. (2005). Effects of suspended sediment characteristics and bed sediment transport on streambed clogging. Hydrological Processes 19, 413–427.
Crossref | GoogleScholarGoogle Scholar |

Sarriquet, P. E. , Bordenave, P. , and Marmonier, P. (2007). Effects of bottom sediment restoration on interstitial habitat characteristics and benthic macroinvertebrate assemblages in a headwater stream. River Research and Applications 23, 815–828.
Crossref | GoogleScholarGoogle Scholar |

Schälchli, U. (1992). The clogging of coarse gravel river beds by fine sediment. Hydrobiologia 235–236, 189–197.
Crossref | GoogleScholarGoogle Scholar |

Song, J. , Chen, X. , Cheng, C. , Summerside, S. , and Wen, F. (2007). Effects of hyporheic processes on streambed vertical hydraulic conductivity in three rivers of Nebraska. Geographical Research Letters 34, L07409.
Crossref | GoogleScholarGoogle Scholar |

Storey, R. G. , Howard, K. W. F. , and Williams, D. D. (2003). Factors controlling riffle-scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three-dimensional groundwater flow model. Water Resources Research 39, 1034.
Crossref | GoogleScholarGoogle Scholar |

Thibodeaux, L. J. , and Boyle, J. D. (1987). Bedform-generated convective transport in bottom sediment. Nature 325, 341–343.
Crossref | GoogleScholarGoogle Scholar |

Thorp, J. H. , Thoms, M. C. , and Delong, M. D. (2006). The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Research and Applications 22, 123–147.
Crossref | GoogleScholarGoogle Scholar |

Vannote, R. L. , Minshall, G. W. , Cummins, K. W. , Sedell, J. R. , and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
Crossref | GoogleScholarGoogle Scholar |

Ward, J. V. , and Stanford, J. A. (1995). The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research and Management 10, 159–168.
Crossref | GoogleScholarGoogle Scholar |

Ward, J. V. , Tockner, K. , Edwards, P. J. , Kollman, J. , and Bretschko, G. (1999). A reference river system for the Alps: the ‘Fiume Tagliamento’. Regulated Rivers: Research and Management 15, 63–75.
Crossref | GoogleScholarGoogle Scholar |

White, D. S. (1993). Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society 12, 61–69.
Crossref | GoogleScholarGoogle Scholar |

Williams, D. D. , and Hynes, H. B. N. (1974). The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4, 233–256.
Crossref | GoogleScholarGoogle Scholar |

Wondzell, S. M. , LaNier, J. , Haggerty, R. , Woodsmith, R. D. , and Edwards, R. T. (2009). Changes in hyporheic exchange flow following experimental wood removal in a small, low-gradient stream. Water Resources Research 45, W05406.
Crossref | GoogleScholarGoogle Scholar |

Wroblicky, G. J. , Campana, M. E. , Valett, H. M. , and Dahm, C. N. (1998). Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems. Water Resources Research 34, 317–328.