Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review

W. A. Nelson
+ Author Affiliations
- Author Affiliations

National Institute of Water & Atmospheric Research, Private Bag 14-901, Wellington 6241, New Zealand. Email: w.nelson@niwa.co.nz

Marine and Freshwater Research 60(8) 787-801 https://doi.org/10.1071/MF08335
Submitted: 3 December 2008  Accepted: 8 February 2009   Published: 27 August 2009

Abstract

Calcified macroalgae are distributed in marine habitats from polar to tropical latitudes and from intertidal shores to the deepest reaches of the euphotic zone. These algae play critical ecological roles including being key to a range of invertebrate recruitment processes, functioning as autogenic ecosystem engineers through provision of three-dimensional habitat structure, as well as contributing critical structural strength in coral reef ecosystems. Calcified macroalgae contribute significantly to the deposition of carbonates in coastal environments. These organisms are vulnerable to human-induced changes resulting from land and coastal development, such as altered patterns of sedimentation, nutrient enrichment through sewage and agricultural run-off, and are affected by coastal dredging and aquaculture. The consequences of increasing sea surface temperatures and fundamental changes in the carbon chemistry of seawater due to CO2 emissions from anthropogenic activities will have serious impacts on calcifying macroalgae. It is not yet understood how interactions between a range of variables acting at local and global scales will influence the viability of calcifying macroalgae and associated ecosystems. Research is urgently needed on all aspects of the taxonomy, biology and functional ecology of calcifying macroalgae. Without an understanding of the species present, measurement of change and understanding species-specific responses will not be possible.

Additional keywords: calcified green algae, carbonate deposition, Corallinales, ecosystem engineers, invertebrate recruitment, maerl, ocean acidification, rhodoliths.


Acknowledgements

This review was prepared with funding from the New Zealand Foundation for Research Science and Technology contract C01X0502 and Capability Funding CRCR093. The author thanks Chris Hepburn, Judy Broom and Tracy Farr for advice, and Andrew Boulton, Mike Foster and an anonymous referee for constructive comments. John Huisman, Sean Cooper, Debbie Freeman and Kate Neill are thanked for the images.


References

Adey, W. H. (1998). Coral reefs: Algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. Journal of Phycology 34, 393–406.
Crossref | GoogleScholarGoogle Scholar | Briand X. (1991). Seaweed harvesting in Europe. In ‘Seaweed Resources in Europe: Uses and Potential’. (Eds M. D. Guiry and G. Blunden.) pp. 293–308. (Wiley: London.)

Broom, J. E. S. , Hart, D. R. , Farr, T. J. , Nelson, W. A. , and Neill, K. F. , et al. (2008). Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. Molecular Phylogenetics and Evolution 46, 958–973.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | De Grave S., Fazakerley H., Kelly L., Guiry M. D., Ryan M., et al. (2000). A study of selected maërl beds in Irish waters and their potential for sustainable extraction. Marine Institute Report IR.95.MR.019 of the Marine Research Measure, Ireland.

Diaz-Pulido G., McCook L. J., Larkum A. W. D., Lotze H. K., Raven J. A., et al. (2007). Vulnerability of macroalgae of the Great Barrier Reef to climate change. In ‘Climate Change and the Great Barrier Reef: A Vulnerability Assessment’. (Eds J. Johnson and P. Marshall), pp. 151–192. (Great Barrier Reef Marine Park Authority and Australian Greenhouse Office: Townsville.)

Doney, S. C. , Fabry, V. J. , Feely, R. A. , and Kleypas, J. A. (2009). Ocean acidification: the other CO2 problem. Annual Review of Materials Science 2009, 169–192.
Guiry M. D., and Guiry G. M. (2008). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at http://www.algaebase.org [Accessed 24 November 2008].

Halfar, J. , Zack, T. , Kronz, A. , and Zachos, J. C. (2000). Growth and high-resolution paleoenvironmental signals of rhodoliths (coralline red algae): a new biogenic archive. Journal of Geophysical Research 105, 22107–22116.
Crossref | GoogleScholarGoogle Scholar | CAS | Hall-Spencer J., Kelly J., and Maggs C. A. (2008a). Assessment of maerl beds in the OSPAR area and the development of a monitoring program. (Department of Environment, Heritage and Local Government: Ireland.)

Hall-Spencer, J. M. , Rodolfo-Metalpa, R. , Martin, S. , Ransome, E. , and Fine, M. , et al. (2008b). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Harvey A. S., Woelkerling W. J., Farr T. J., Neill K. F. and Nelson W. A. (2005). Coralline algae of central New Zealand: An identification guide to common ‘crustose’ species. In ‘NIWA Information Series Vol. 57’. (Wellington: New Zealand.)

Hetzinger, S. , Halfar, J. , Riegl, B. , and Godinez-Orta, L. (2006). Sedimentology and acoustic mapping of modern rhodolith facies on a non-tropical carbonate shelf (Gulf of California, Mexico). Journal of Sedimentary Research 76, 670–682.
Crossref | GoogleScholarGoogle Scholar | Hicks G. R. F. (1986). Meiofauna associated with rocky shore algae. In ‘The Ecology of Rocky Coasts’. (Eds P. G. Moore and R. Seed) pp. 36–56. (Hodder and Stoughton: London.)

Hinojosa-Arango, G. , and Riosmena-Rodríguez, R. (2004). Influence of rhodolith forming species and growth-form on associated fauna of rhodolith beds in the Central-West Gulf of California, México. Marine Ecology (Berlin) 25, 109–127.
Crossref | GoogleScholarGoogle Scholar | Littler M. M., and Littler D. S. (1984). Models of tropical reef biogenesis: the contribution of algae. In ‘Progress in Phycological Research, Vol. 3’. (Eds F. E. Round and D. J. Chapman.) pp. 323–364. (Biopress: Bristol.)

Littler, M. M. , and Littler, D. (2007). Assessment of coral reefs using herbivory/nutrient assays and indicator groups of benthic primary producers: a critical synthesis, proposed protocols, and a critique of management strategies. Aquatic Conservation: Marine & Freshwater Ecosystems 17, 195–215.
Crossref | GoogleScholarGoogle Scholar | Lobban C., and Harrison P. J. (1994). ‘Seaweed Ecology and Physiology’. (Cambridge University Press, Cambridge.)

Lund, M. , Davies, P. J. , and Braga, J. C. (2000). Coralline algal nodules off Fraser Island, eastern Australia. Facies 42, 25–34.
Crossref | GoogleScholarGoogle Scholar | Milliman J. D. (1977). Role of calcareous algae in Atlantic continental margin sedimentation. In ‘Fossil Algae: Recent Results and Developments’. (Ed. E. Flugel) pp. 232–247. (Springer Verlag: Berlin.)

Morse, A. N. C. (1991). How do planktonic larvae know where to settle? American Scientist 79, 154–167.
Solomon S., Qin D., Manning M., Alley R. B., Berntsen T., et al. (2007). Technical Summary. In ‘Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis et al.) (Cambridge University Press, Cambridge.)

Spalding, H. , Foster, M. S. , and Heine, J. N. (2003). Composition, distribution, and abundance of deepwater (>30 m) macroalgae in central California. Journal of Phycology 39, 273–284.
Woelkerling W. J. (1988). ‘The Coralline Red Algae: An Analysis of the Genera and Subfamilies of Nongeniculate Corallinaceae’. (British Museum (Natural History) and Oxford University Press: London and Oxford.)

Woelkerling, W. J. , Irvine, L. M. , and Harvey, A. S. (1993). Growth forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Australian Systematic Botany 6, 277–293.
Crossref | GoogleScholarGoogle Scholar |

Yabur-Pacheco, R. , and Riosmena-Rodríguez, R. (2006). Rhodolith bed composition in the southwestern Gulf of California, Mexico. The Nagisa World Congress 1, 37–47.


Zaneveld, J. S. , and Sanford, R. B. (1980). Crustose corallinaceous algae (Rhodophyta) of the New Zealand and United States Scientific Expedition to the Ross Sea, Balleny Islands, and Macquarie Ridge, 1965. Blumea 26, 205–231.