Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Environmental predictors of macroinvertebrate communities in coastal wetlands of southern Brazil

Cristina Stenert A , Roberta C. Bacca A , Carolina C. Mostardeiro A and Leonardo Maltchik A B
+ Author Affiliations
- Author Affiliations

A Laboratory of Ecology and Conservation of Aquatic Ecosystems, UNISINOS, São Leopoldo, Brazil.

B Corresponding author. Email: maltchik@unisinos.br

Marine and Freshwater Research 59(6) 540-548 https://doi.org/10.1071/MF07220
Submitted: 23 November 2007  Accepted: 26 April 2008   Published: 19 June 2008

Abstract

The rapid degradation of wetlands worldwide accentuates the urgent need for ecological data to help manage and protect the threatened biodiversity in the remaining often-fragmented wetlands. In the Neotropics where fragmentation is common, environmental factors structuring aquatic macroinvertebrate communities are poorly known. We tested the hypothesis that physical features, such as wetland area, habitat diversity, water depth and temperature, and water and sediment chemistry are important correlates with richness, density and composition of wetland macroinvertebrate assemblages in Brazil. If so, do these correlations differ between summer and winter? A total of 16 895 individuals across 61 families were collected. Richness was positively associated with habitat diversity and water depth and negatively associated with water temperature. Macroinvertebrate density was negatively associated with water depth, and positively correlated with habitat diversity, percentage of sediment organic matter and water conductivity. Macroinvertebrate composition was associated mainly with wetland area and habitat diversity in the wetlands studied; these relationships persisted in both seasons. Our data illustrate environmental factors that potentially structure and maintain aquatic macroinvertebrate biodiversity in southern Brazil wetlands, and should be managed because 90% of these ecosystems have already been lost as a result of human activities.

Additional keywords: community structure, habitat diversity, Neotropical region, wetland area.


Acknowledgements

The authors wish to thank Ms. Luis Fernando Carvalho Perelló for logistic support and Elvio S. F. Medeiros for English review. This research was supported by funds from UNISINOS (02.00.023/00–0) and CNPq (52370695.2). Leonardo Maltchik holds a Brazilian Research Council – CNPq Research Productivity grant. We thank two anonymous reviewers for helpful comments on the manuscript. We declare that the data collection complied with current Brazilian laws.


References

Aho, J. (1978). Freshwater snail populations and the theory of island biogeography: A case study in southern Finland. Annales Zoologici Fennici 15, 146–154.
American Public Health Association (APHA) (1989). ‘Standard Methods for the Examination of Water and Wastewater.’ 17th edn. (American Public Health Association, American Water Works Association, and Water Pollution Control Federation: Washington, D.C.)

Azambuja I. H. V., Vernetti F. J.Jr, and Magalhães A. M.Jr (2004). Aspectos socioeconômicos da produção do arroz. In ‘Arroz Irrigado no Sul do Brasil (Irrigated Rice in Southern Brazil)’. (Eds A. D. S. Gomes and A. M. D. Magalhães Jr.) pp. 23–44. (Embrapa: Pelotas, RS.)

Batzer, D. P. , Palik, B. J. , and Buech, R. (2004). Relationships between environmental characteristics and macroinvertebrate communities in seasonal woodland ponds of Minnesota. Journal of the North American Benthological Society 23, 50–68.
Crossref | GoogleScholarGoogle Scholar | Brönmark C., and Hansson L. A. (1998). ‘The Biology of Lakes and Ponds.’ (Oxford University Press: New York.)

Brose, U. (2003). Island biogeography of temporary wetland carabid beetle communities. Journal of Biogeography 30, 879–888.
Crossref | GoogleScholarGoogle Scholar | Fernández H. R., and Domínguez E. (2001). ‘Guía para la Determinación de los Artrópodos Bentónicos Sudamericanos.’ (Universidad Nacional de Tucumán: Tucumán, Argentina.)

Fryer, G. (1985). Crustacean diversity in relation to the size of water bodies: some facts and problems. Freshwater Biology 15, 347–361.
Crossref | GoogleScholarGoogle Scholar | Gomes A. D. S., and Magalhães A. M. D.Jr (Eds) (2004). ‘Arroz Irrigado no Sul do Brasil (Irrigated Rice in Southern Brazil).’ (Embrapa: Pelotas, RS.)

Gotelli, N. J. , and Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4, 379–391.
Crossref | GoogleScholarGoogle Scholar | Gotelli N. J., and Entsminger G. L. (2001). ‘EcoSim: Null Models Software for Ecology.’ Version 7.0. (Acquired Intelligence Inc. and Kesey-Bear: Vermont.)

Guadagnin, D. , and Maltchik, L. (2007). Habitat and landscape factors associated with Neotropical waterbird occurrence and richness in wetland fragments. Biodiversity and Conservation 16, 1231–1244.
Crossref | GoogleScholarGoogle Scholar | Heck K. L.Jr, and Crowder L. B. (1991). Habitat structure and predator-prey interactions in vegetated aquatic systems. In ‘Habitat Structure’. (Eds S. S. Bell, E. D. McCoy and H. R. Mushinsky.) pp. 281–299. (Chapman and Hall: New York.)

Heino, J. (2000). Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418, 229–242.
Crossref | GoogleScholarGoogle Scholar | Legendre P., and Legendre L. (1998). ‘Numerical Ecology: Developments in Environmental Modelling.’ (Elsevier Science: Amsterdam.)

Lopretto E. C., and Tell G. (1995). ‘Ecosistemas de Aguas Continentales: Metodologías para su Estudio.’ (Ediciones Sur: La Prata.)

MacArthur R. H., and Wilson E. O. (1967). ‘The Theory of Island Biogeography.’ (Princeton University Press: Princeton.)

Maltchik, L. (2003). Three new wetlands inventories in Brazil. Interciencia 28, 421–423.
Merritt R. W., and Cummins K. W. (1996). ‘An Introduction to the Aquatic Insects of North America.’ (Kendall/Hunt Publishing Company: City, IA.)

Mitsch W. J., and Gosselink J. G. (2000). ‘Wetlands.’ (John Wiley and Sons: New York.)

Murkin H. R. (1989). The basis for food chains in prairie wetlands. In ‘Northern Prairie Wetlands’. (Ed. A. G. van der Valk.) pp. 316–338. (Iowa State University Press: Ames, IA.)

Naranjo, L. G. (1995). An evaluation of the first inventory of South American wetlands. Vegetatio 118, 125–129.
Crossref | GoogleScholarGoogle Scholar | Neiff J. J. (2001). Diversity in some tropical wetland systems of South America. In ‘Biodiversity in Wetlands: Assessment, Function and Conservation’. (Eds B. Gopal, W. J. Junk and J. A. Davis.) pp. 157–186. (Backhuys Publishers: Leiden.)

Oertli, B. , Joey, D. A. , Castella, E. , Juge, R. , Cambin, D. , and Lachavanne, J. B. (2002). Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104, 59–70.
Crossref | GoogleScholarGoogle Scholar | Rambo B. (2000). ‘A Fisionomia do Rio Grande do Sul: Ensaio de Monografia Natural.’ (Unisinos: São Leopoldo, RS.)

Ricklefs, R. E. , and Lovette, I. J. (1999). The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. Journal of Animal Ecology 68, 1142–1160.
Crossref | GoogleScholarGoogle Scholar | Rosenberg D. M., Davies I. J., Cobb D. G., and Wiens A. P. (1997). ‘Ecological Monitoring and Assessment Network (EMAN – Environment Canada) – Protocols for Measuring Biodiversity: Benthic Macroinvertebrates in Freshwaters.’ (Department of Fisheries & Oceans, Freshwater Institute: Winnipeg, Manitoba.)

Santamaría, L. , and Klaassen, M. (2002). Waterbird-mediated dispersal of aquatic organisms: An introduction. Acta Oecologica 23, 115–119.
Crossref | GoogleScholarGoogle Scholar | Shine C., and Klemm C. (1999). ‘Wetlands, Water and the Law: Using Law to Advance Wetland Conservation and Wise Use.’ (IUCN: Gland.)

Stenert, C. , and Maltchik, L. (2007). Influence of area, altitude and hydroperiod on macroinvertebrate communities in southern Brazil wetlands. Marine and Freshwater Research 58, 993–1001.
Crossref | GoogleScholarGoogle Scholar | Suguio K. (1973). ‘Introdução à Sedimentologia.’ (Edgard Blucher: São Paulo.)

Systat (2004). ‘Systat Software.’ (Richmond: California.)

Tagliani P. R. A. (1995). Estratégia de Planificação Ambiental para o Sistema Ecológico da Restinga da Lagoa dos Patos – Planície Costeira do Rio Grande do Sul. PhD Thesis, Universidade Federal de São Carlos, São Carlos, SP.

Tarr, T. L. , Baber, M. J. , and Babbitt, K. J. (2005). Macroinvertebrate community structure across a wetland hydroperiod gradient in southern New Hampshire, USA. Wetlands Ecology and Management 13, 321–334.
Crossref | GoogleScholarGoogle Scholar | ter Braak C. J. F. (1991). ‘CANOCO (Version 3.12).’ (Agricultural Mathematics Group: Wageningen.)

Tolonen, K. T. , Hamalainen, H. , Holopainen, I. J. , Mikkonen, K. , and Karjalainen, J. (2003). Body size and substrate association of littoral insects in relation to vegetation structure. Hydrobiologia 499, 179–190.
Crossref | GoogleScholarGoogle Scholar | Williams C. B. (1964). ‘Patterns in the Balance of Nature.’ (Academic Press: London.)

Zimmer, K. D. , Hanson, M. A. , and Butler, M. G. (2000). Factors influencing invertebrate communities in prairie wetlands: a multivariate approach. Canadian Journal of Fisheries and Aquatic Sciences 57, 76–85.
Crossref | GoogleScholarGoogle Scholar |