Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Revisiting an important component of plant genomes: microsatellites

Caihua Gao A , Xiaodong Ren A , Annaliese S. Mason B , Jiana Li A , Wei Wang A , Meili Xiao A and Donghui Fu C D
+ Author Affiliations
- Author Affiliations

A Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.

B Centre for Integrative Legume Research and School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Qld, Australia.

C Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.

D Corresponding author. Email: fudhui@163.com

Functional Plant Biology 40(7) 645-661 https://doi.org/10.1071/FP12325
Submitted: 31 October 2012  Accepted: 16 January 2013   Published: 11 February 2013

Abstract

Microsatellites are some of the most highly variable repetitive DNA tracts in genomes. Few studies focus on whether the characteristic instability of microsatellites is linked to phenotypic effects in plants. We summarise recent data to investigate how microsatellite variations affect gene expression and hence phenotype. We discuss how the basic characteristics of microsatellites may contribute to phenotypic effects. In summary, microsatellites in plants are universal and highly mutable, they coexist and coevolve with transposable elements, and are under selective pressure. The number of motif nucleotides, the type of motif and transposon activity all contribute to the nonrandom generation and decay of microsatellites, and to conservation and distribution biases. Although microsatellites are generated by accident, they mature through responses to environmental change before final decay. This process is mediated by organism adjustment mechanisms, which maintain a balance between birth versus death and growth versus decay in microsatellites. Close relationships also exist between the physical structure, variation and functionality of microsatellites: in most plant species, sequences containing microsatellites are associated with catalytic activity and binding functions, are expressed in the membrane and organelles, and participate in the developmental and metabolic processes. Microsatellites contribute to genome structure and functional plasticity, and may be considered to promote species evolution in plants in response to environmental changes. In conclusion, the generation, loss, functionality and evolution of microsatellites can be related to plant gene expression and functional alterations. The effect of microsatellites on phenotypic variation may be as significant in plants as it is in animals.

Additional keywords: evolution, microsatellite distribution, microsatellite function, microsatellite variation.


References

Akagi H, Yokozeki Y, Inagaki A, Mori K, Fujimura T (2001) Micron, a microsatellite-targeting transposable element in the rice genome. Molecular Genetics and Genomics 266, 471–480.
Micron, a microsatellite-targeting transposable element in the rice genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpt1Ggsrk%3D&md5=5ece2ff943ab60dd585c3cf38c179f03CAS |

Antequera F, Bird AP (1988) Unmethylated Cpg islands associated with genes in higher-plant DNA. The EMBO Journal 7, 2295–2299.

Ashikawa I (2001) Gene-associated CpG islands in plants as revealed by analyses of genomic sequences. The Plant Journal 26, 617–625.
Gene-associated CpG islands in plants as revealed by analyses of genomic sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtVGrsbs%3D&md5=0d0f4b7342dafaf5ed81a8f2ab5851b6CAS |

Asp T, Frei UK, Didion T, Nielsen KK, Lubberstedt T (2007) Frequency, type, and distribution of EST-SSRs from three genotypes of Lolium perenne, and their conservation across orthologous sequences of Festuca arundinacea, Brachypodium distachyon, and Oryza sativa. BMC Plant Biology 7, 36
Frequency, type, and distribution of EST-SSRs from three genotypes of Lolium perenne, and their conservation across orthologous sequences of Festuca arundinacea, Brachypodium distachyon, and Oryza sativa.Crossref | GoogleScholarGoogle Scholar |

Azaiez A, Bouchard EF, Jean M, Belzile FJ (2006) Length, orientation, and plant host influence the mutation frequency in microsatellites. Genome 49, 1366–1373.
Length, orientation, and plant host influence the mutation frequency in microsatellites.Crossref | GoogleScholarGoogle Scholar |

Bhargava A, Fuentes FF (2010) Mutational dynamics of microsatellites. Molecular Biotechnology 44, 250–266.
Mutational dynamics of microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVGqsrs%3D&md5=c17a9ed9e581a6b2f30b7a5ba0cc160bCAS |

Blake RD, Delcourt SG (1998) Thermal stability of DNA. Nucleic Acids Research 26, 3323–3332.
Thermal stability of DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFynu7g%3D&md5=e7aa6e8d4b7a59b5fec0d3360f796f9aCAS |

Bourdon V, Harvey A, Lonsdale DM (2001) Introns and their positions affect the translational activity of mRNA in plant cells. EMBO Reports 2, 394–398.

Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28, 1040–1050.
The rise, fall and renaissance of microsatellites in eukaryotic genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFGrtb7I&md5=b8d74ae11695d514542216e25c572b09CAS |

Calabrese PP, Durrett RT, Aquadro CF (2001) Dynamics of microsatellite divergence under stepwise mutation and proportional slippage/point mutation models. Genetics 159, 839–852.

Casacuberta E, Puigdomenech P, Monfort A (2000) Distribution of microsatellites in relation to coding sequences within the Arabidopsis thaliana genome. Plant Science 157, 97–104.
Distribution of microsatellites in relation to coding sequences within the Arabidopsis thaliana genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsFCjt7Y%3D&md5=214ca44139fae4343553dadda12a2bc1CAS |

Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, Huang SW, Weng YQ (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11, 569–588.
Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.).Crossref | GoogleScholarGoogle Scholar |

Chen DJ, Meng YJ, Yuan CH, Bai L, Huang DL, Lv SL, Wu P, Chen LL, Chen M (2011) Plant siRNAs from introns mediate DNA methylation of host genes. RNA 17, 1012–1024.
Plant siRNAs from introns mediate DNA methylation of host genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnt1eqtbs%3D&md5=a88281ef3ccdf51631e7b2b78ca5e081CAS |

Chen M, Tan ZY, Zeng GM, Peng J (2010) Comprehensive analysis of simple sequence repeats in pre-miRNAs. Molecular Biology and Evolution 27, 2227–2232.
Comprehensive analysis of simple sequence repeats in pre-miRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WhtL7L&md5=c030d39f896e0b80f9b596fea0dd3bd6CAS |

Chung BYW, Simons C, Firth AE, Brown CM, Hellens RP (2006) Effect of 5′ UTR introns on gene expression in Arabidopsis thaliana. BMC Genomics 7, 120
Effect of 5′ UTR introns on gene expression in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |

Coates BS, Kroemer JA, Sumerford DV, Hellmich RL (2011) A novel class of miniature inverted repeat transposable elements (MITEs) that contain hitchhiking (GTCY)(n) microsatellites. Insect Molecular Biology 20, 15–27.
A novel class of miniature inverted repeat transposable elements (MITEs) that contain hitchhiking (GTCY)(n) microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCmtr8%3D&md5=1e066fcb983ce56b55cbf98e1056750aCAS |

Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2010) A helitron-like transposon superfamily from lepidoptera disrupts (GAAA)(n) microsatellites and is responsible for flanking sequence similarity within a microsatellite family. Journal of Molecular Evolution 70, 275–288.
A helitron-like transposon superfamily from lepidoptera disrupts (GAAA)(n) microsatellites and is responsible for flanking sequence similarity within a microsatellite family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvFSjsLY%3D&md5=aed456a97f2df01d2026278148a43c04CAS |

da Maia LC, de Souza VQ, Kopp MM, de Carvalho FIF, de Oliveira AC (2009) Tandem repeat distribution of gene transcripts in three plant families. Genetics and Molecular Biology 32, 822–833.
Tandem repeat distribution of gene transcripts in three plant families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpvFyrtg%3D%3D&md5=1684f8dfccbee42d172f37577ba6d749CAS |

de Moor CH, Meijer H, Lissenden S (2005) Mechanisms of translational control by the 3′ UTR in development and differentiation. Seminars in Cell & Developmental Biology 16, 49–58.
Mechanisms of translational control by the 3′ UTR in development and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFOhtQ%3D%3D&md5=80f59263875290dccd684ba80cde4000CAS |

de Pinho Benemann D, Machado LN, Arge LWP, Bianchi VJ, deOliveira AC, da Maia LC, Peters JA (2012) Identification, characterization and validation of SSR markers from the gerbera EST database. Plant Omics Journal 5, 159–166.

Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes & Development 25, 1010–1022.
CpG islands and the regulation of transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOgsLY%3D&md5=f53ba9558fb30d5b35ad276ebe87bc1eCAS |

Dettman JR, Taylor JW (2004) Mutation and evolution of microsatellite loci in Neurospora. Genetics 168, 1231–1248.
Mutation and evolution of microsatellite loci in Neurospora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltVeltw%3D%3D&md5=3d949fe0e95e8ba294fffda511d719c2CAS |

Devey DS, Chase MW, Clarkson JJ (2009) A stuttering start to plant DNA barcoding: microsatellites present a previously overlooked problem in non-coding plastid regions. Taxon 58, 7–15.

Doring H, Starlinger P (1986) Molecular genetics of transposable elements in plants. Annual Review of Genetics 20, 175–200.
Molecular genetics of transposable elements in plants.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7is1Kksw%3D%3D&md5=6aa486decf252104d66056fba0726482CAS |

Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, Gaikwad K, Sharma TR, Raje RS, Bandhopadhya TK, Datta S, Singh MN, Bashasab F, Kulwal P, Wanjari KB, Varshney RK, Cook DR, Singh NK (2011) Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biology 11, 17
Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh].Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvFant7o%3D&md5=d81ca4c17537f2bd5d15fd453504529fCAS |

Earle JS, Luthra R, Romans A, Abraham R, Ensor J, Yao H, Hamilton SR (2010) Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. The Journal of Molecular Diagnostics 12, 433–440.
Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVehurrP&md5=993f41c4f18f69dfc9b5466af0184863CAS |

Echt CS, Saha S, Krutovsky KV, Wimalanathan K, Erpelding JE, Liang C, Nelson CD (2011) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genetics 12, 17
An annotated genetic map of loblolly pine based on microsatellite and cDNA markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslamurY%3D&md5=8d6f551eba137d61a9597fa950e3da71CAS |

Eckert KA, Hile SE (2009) Every microsatellite is different: intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome. Molecular Carcinogenesis 48, 379–388.
Every microsatellite is different: intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksVKrsr8%3D&md5=15408e78941dc0667cb5ecc2ca2b6f3dCAS |

Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nature Reviews. Genetics 5, 435–445.
Microsatellites: simple sequences with complex evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXktV2rsrg%3D&md5=817636e287eb236b7de946b337b00c96CAS |

Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99, 125–132.
EST-SSRs as a resource for population genetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVOmtLk%3D&md5=436d9e3e58d73146db5ccb8fe8ea45afCAS |

Fan H, Chu JY (2007) A brief review of short tandem repeat mutation. Genomics, Proteomics & Bioinformatics 5, 7–14.
A brief review of short tandem repeat mutation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVKltrs%3D&md5=3d4f9c7d7bcbb6699b071a19447afe29CAS |

Feng SH, Cokus SJ, Zhang XY, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (2010) Conservation and divergence of methylation patterning in plants and animals. Proceedings of the National Academy of Sciences of the United States of America 107, 8689–8694.
Conservation and divergence of methylation patterning in plants and animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmsVOrsbo%3D&md5=6baaa010e4cad7ab0407e505e48f2764CAS |

Fouse SD, Shen Y, Pellegrini M, Cole S, Meissner A, Van Neste L, Jaenisch R, Fan GP (2008) Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3K4/K27 trimethylation. Cell Stem Cell 2, 160–169.
Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3K4/K27 trimethylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlygtb0%3D&md5=141b226a26bd5fd7ff01092c0ab19a78CAS |

Friedrich K, Lee L, Leistritz DF, Nurnberg G, Saha B, Hisama FM, Eyman DK, Lessel D, Nurnberg P, Li CM, et al (2010) WRN mutations in Werner syndrome patients: genomic rearrangements, unusual intronic mutations and ethnic-specific alterations. Human Genetics 128, 103–111.
WRN mutations in Werner syndrome patients: genomic rearrangements, unusual intronic mutations and ethnic-specific alterations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntlKqs7o%3D&md5=1f338513f9acf7fb0e1a2e4a4c5eb1e5CAS |

Fujimori S, Washio T, Higo K, Ohtomo Y, Murakami K, Matsubara K, Kawai J, Carninci P, Hayashizaki Y, Kikuchi S, Tomita M (2003) A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription. FEBS Letters 554, 17–22.
A novel feature of microsatellites in plants: a distribution gradient along the direction of transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosVymur0%3D&md5=3b5aca6575923402bf19fcccdcc60f6dCAS |

Gao CH, Tang ZL, Yin JM, An ZS, Fu DH, Li JN (2011) Characterization and comparison of gene-based simple sequence repeats across Brassica species. Molecular Genetics and Genomics 286, 161–170.
Characterization and comparison of gene-based simple sequence repeats across Brassica species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlaiu7o%3D&md5=af5614b915c3434c76757c18cf7b0d11CAS |

Gao H, Cai SL, Yan BL, Chen BY, Yu F (2009) Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes. Biological Research 42, 365–375.
Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVyhs7w%3D&md5=3116e87f8e10f5daf9b0d97d6c0e82b0CAS |

Garner TWJ (2002) Genome size and microsatellites: the effect of nuclear size on amplification potential. Genome 45, 212–215.
Genome size and microsatellites: the effect of nuclear size on amplification potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslartr8%3D&md5=7b306ee831053027daef7b7ae64c68f0CAS |

Gibbons JG, Rokas A (2009) Comparative and functional characterization of intragenictandem repeats in 10 Aspergillus genomes. Molecular Biology and Evolution 26, 591–602.
Comparative and functional characterization of intragenictandem repeats in 10 Aspergillus genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhvF2ktro%3D&md5=a149de7d546af4871498f82e8d15d346CAS |

Grover A, Sharma PC (2011) Is spatial occurrence of microsatellites in the genome a determinant of their function and dynamics contributing to genome evolution? Current Science 100, 859–869.

Gupta P, Balyan H, Sharma P, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Current Science 70, 45–54.

Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113, 163–185.
The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFSltL8%3D&md5=298c4121ae995a43873769d1655203bbCAS |

Gupta S, Tripathi KP, Roy S, Sharma A (2010) Analysis of unigene derived microsatellite markers in family Solanaceae. Bioinformation 5, 113–121.
Analysis of unigene derived microsatellite markers in family Solanaceae.Crossref | GoogleScholarGoogle Scholar |

Hamarsheh O, Amro A (2011) Characterization of simple sequence repeats (SSRs) from Phlebotomus papatasi (Diptera: Psychodidae) expressed sequence tags (ESTs). Parasites & Vectors 4, 189
Characterization of simple sequence repeats (SSRs) from Phlebotomus papatasi (Diptera: Psychodidae) expressed sequence tags (ESTs).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlGqsbrM&md5=9f33b5ef9e58d91e06752bc43f2caca7CAS |

Hong CP, Piao ZY, Kang TW, Batley J, Yang TJ, Hur YK, Bhak J, Park BS, Edwards D, Lim YP (2007) Genomic distribution of simple sequence repeats in Brassica rapa. Molecules and Cells 23, 349–356.

Houlné G, Meyer B, Schantz R (1998) Alteration of the expression of a plant defensin gene by exon shuffling in bell pepper (Capsicum annuum L.). Molecular & General Genetics 259, 504–510.
Alteration of the expression of a plant defensin gene by exon shuffling in bell pepper (Capsicum annuum L.).Crossref | GoogleScholarGoogle Scholar |

Hulzink RJM, de Groot PFM, Croes AF, Quaedvlieg W, Twell D, Wullems GJ, van Herpen MMA (2002) The 5′ untranslated region of the ntp303 gene strongly enhances translation during pollen tube growth, but not during pollen maturation. Plant Physiology 129, 342–353.
The 5′ untranslated region of the ntp303 gene strongly enhances translation during pollen tube growth, but not during pollen maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjvFSms70%3D&md5=9fe47c8fae82cf85bf76022b5ecf4418CAS |

Jansen A, Gemayel R, Verstrepen KJ (2012) Unstable microsatellite repeats facilitate rapid evolution of coding and regulatory sequences. Genome Dynamics 7, 108–125.
Unstable microsatellite repeats facilitate rapid evolution of coding and regulatory sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1GiurzP&md5=09dfa31071838e9a2b98f3b65e453eebCAS |

Jarne P, Pierre JL (1996) Microsatellites, from molecules to populations and back. Trends in Ecology & Evolution 11, 424–429.
Microsatellites, from molecules to populations and back.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFGhtA%3D%3D&md5=88f8795f0b64d4adc3cc5c645b24248aCAS |

Jarne P, David P, Viard D (1998) Microsatellites, transposable elements and the X chromosome. Molecular Biology and Evolution 15, 28–34.
Microsatellites, transposable elements and the X chromosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltFChtw%3D%3D&md5=27faf858094f273de327a5e433439c66CAS |

Jiang D, Zhong GY, Hong QB (2006) Analysis of microsatellites in Citrus unigenes. Acta Genetica Sinica 33, 345–353.

Jiang JX, Wang ZH, Tang BR, Xiao L, Ai X, Yi ZL (2012) Development of novel chloroplast microsatellite markers for Miscanthus species (Poaceae). American Journal of Botany 99, e230–e233.
Development of novel chloroplast microsatellite markers for Miscanthus species (Poaceae).Crossref | GoogleScholarGoogle Scholar |

Joy N, Soniya EV (2012) Identification of an miRNA candidate reflects the possible significance of transcribed microsatellites in the hairpin precursors of black pepper. Functional & Integrative Genomics 12, 387–395.
Identification of an miRNA candidate reflects the possible significance of transcribed microsatellites in the hairpin precursors of black pepper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xns1eqt7s%3D&md5=3a42c13360bbafe553c72e0d6d974163CAS |

Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Molecular Biology 48, 501–510.
Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsFWrsbc%3D&md5=831287dfdc5f13edf5edb3e1c4d10338CAS |

Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics 22, 253–259.
Simple sequence repeats as advantageous mutators in evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksVCmtLo%3D&md5=8d3651f8a23df02baac0421b265e2c16CAS |

Kashi Y, Soller M (1999) Functional roles of microsatellites and minisatellites. In ‘Microsatellites: evolution and applications’. (Eds DB Goldstein, C Schlotterer) pp. 10–23. (Oxford University Press: Oxford)

Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Molecular Biology and Evolution 18, 1161–1167.
Differential distribution of simple sequence repeats in eukaryotic genome sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVGrur4%3D&md5=bb28daa3a99f7e6ebd74bde88fbb01aeCAS |

Kelkar YD, Strubczewski N, Hile SE, Chiaromonte F, Eckert KA, Makova KD (2010) What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats. Genome Biology and Evolution 2, 620–635.
What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats.Crossref | GoogleScholarGoogle Scholar |

Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD (2008) The genome-wide determinants of human and chimpanzee microsatellite evolution. Genome Research 18, 30–38.
The genome-wide determinants of human and chimpanzee microsatellite evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnvFym&md5=34175aec7894add0b2eb7a4b8b80f1e8CAS |

Kuntal H, Sharma V, Daniell H (2012) Microsatellite analysis in organelle genomes of Chlorophyta. Bioinformation 8, 255–259.
Microsatellite analysis in organelle genomes of Chlorophyta.Crossref | GoogleScholarGoogle Scholar |

Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Research 21, 1111–1115.
The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1OhsLw%3D&md5=6ddcd046cd44c9bce974c9a0b41f58a0CAS |

Lai YL, Sun FZ (2003) The relationship between microsatellite slippage mutation rate and the number of repeat units. Molecular Biology and Evolution 20, 2123–2131.
The relationship between microsatellite slippage mutation rate and the number of repeat units.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnt12nsA%3D%3D&md5=b69efe0a6e181df0d87329b7807b9f58CAS |

Lawson MJ, Zhang L (2006) Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biology 7, R14
Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes.Crossref | GoogleScholarGoogle Scholar |

Leclercq S, Rivals E, Jarne P (2010) DNA slippage occurs at microsatellite loci without minimal threshold length in humans: a comparative genomic approach. Genome Biology and Evolution 2, 325–335.
DNA slippage occurs at microsatellite loci without minimal threshold length in humans: a comparative genomic approach.Crossref | GoogleScholarGoogle Scholar |

Lenzmeier BA, Freudenreich CH (2003) Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenetic and Genome Research 100, 7–24.
Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnslarsrg%3D&md5=08b5270a3367d09ce4501b32f99cfc01CAS |

Li SX, Yin TM, Wang MX, Tuskan GA (2011) Characterization of microsatellites in the coding regions of the Populus genome. Molecular Breeding 27, 59–66.
Characterization of microsatellites in the coding regions of the Populus genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOksrk%3D&md5=705a030095057fce24a381e84a14cca9CAS |

Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology 11, 2453–2465.
Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpsl2ms7o%3D&md5=e0e64851cffa38568734bdddc093b64bCAS |

Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution 21, 991–1007.
Microsatellites within genes: structure, function, and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVymtbc%3D&md5=ea514b561a45cc79874ee4ef80e00813CAS |

Liu T, Wahlberg S, Burek E, Lindblom P, Rubio C, Lindblom A (2000) Microsatellite instability as a predictor of a mutation in a DNA mismatch repair gene in familial colorectal cancer. Genes, Chromosomes & Cancer 27, 17–25.
Microsatellite instability as a predictor of a mutation in a DNA mismatch repair gene in familial colorectal cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFym&md5=6167d775e8bd6f08ebb2e405ccd6b1efCAS |

Luo JT, Hao M, Zhang L, Chen JX, Zhang LQ, Yuan ZW, Yan ZH, Zheng YL, Zhang HG, Yen Y, Liu DC (2012) Microsatellite mutation rate during allohexaploidization of newly resynthesized wheat. International Journal of Molecular Sciences 13, 12 533–12 543.
Microsatellite mutation rate during allohexaploidization of newly resynthesized wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVaqtbvF&md5=b8188508eea40e5bde90142e49a40866CAS |

Marriage TN, Hudman S, Mort ME, Orive ME, Shaw RG, Kelly JK (2009) Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 103, 310–317.
Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGqsbbO&md5=6b36401ceaef092bdcc309cf953ab6d9CAS |

McClintock B (1949) Mutable loci in maize. Carnegie Institution of Washington Year Book 48, 142–154.

McCullough AJ, Baynton CE, Schuler MA (1996) Interactions across exons can influence splice site recognition in plant nuclei. The Plant Cell 8, 2295–2307.

Meglecz E, Petenian F, Danchin E, Coeur d’Acier A, Rasplus JY, Faure E (2004) High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Molecular Ecology 13, 1693–1700.
High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1ekt7o%3D&md5=ddd027367b430ecea0400138eb1273a7CAS |

Metzgar D, Bytof J, Wills C (2000) Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Research 10, 72–80.

Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics 30, 194–200.
Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhtFWltLs%3D&md5=e25dc16ecb047b5c60b512fd09dc722eCAS |

Moxon ER, Wills C (1999) DNA microsatellites: agents of evolution? Scientific American 280, 94–99.
DNA microsatellites: agents of evolution?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsF2gug%3D%3D&md5=c77ee47fecde63408e750e7b551f5b63CAS |

Mun JH, Kim DJ, Choi HK, Gish J, Debelle F, Mudge J, Denny R, Endre G, Saurat O, Dudez AM, Kiss GB, Roe B, Young ND, Cook DR (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172, 2541–2555.
Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvFOgtLw%3D&md5=c93ca5b5675262ff152590f23002243bCAS |

Nagaraja Reddy RN, Madhusudhana R, Mohan SM, Chakravarthi DVN, Seetharama N (2012) Characterization, development and mapping of unigene-derived microsatellite markers in sorghum [Sorghum bicolor (L.) Moench]. Molecular Breeding 29, 543–564.
Characterization, development and mapping of unigene-derived microsatellite markers in sorghum [Sorghum bicolor (L.) Moench].Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVGisbY%3D&md5=bd9347aabc699c7ee3d0ae93322592ffCAS |

Nicolaï M, Pisani C, Bouchet JP, Vuylsteke M, Palloix A (2012) Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum). Genetics and Molecular Research 11, 2295–2300.
Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum).Crossref | GoogleScholarGoogle Scholar |

Oliveira EJ, Padua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genetics and Molecular Biology 29, 294–307.
Origin, evolution and genome distribution of microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslClu7w%3D&md5=fbf03f1ae7944ff3d670606909d0bb83CAS |

Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. The Plant Cell 13, 1735–1747.

Palmieri DA, Novelli VM, Bastianel M, Cristofani-Yaly M, Astúa-Monge G, Carlos EF, de Oliveira AC, Machado MA (2007) Frequency and distribution of microsatellites from ESTs of citrus. Genetics and Molecular Biology 30, 1009–1018.
Frequency and distribution of microsatellites from ESTs of citrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjt1Wltrg%3D&md5=e0901626f77d98d8b93e41ce0eb8dd27CAS |

Parida SK, Dalal V, Singh AK, Singh NK, Mohapatra T (2009) Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups. BMC Genomics 10, 140
Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups.Crossref | GoogleScholarGoogle Scholar |

Parida SK, Yadava DK, Mohapatra T (2010) Microsatellites in Brassica unigenes: relative abundance, marker design, and use in comparative physical mapping and genome analysis. Genome 53, 55–67.
Microsatellites in Brassica unigenes: relative abundance, marker design, and use in comparative physical mapping and genome analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlerur0%3D&md5=2c3d614bd952d899149f71134041146aCAS |

Pascoal S, Creer S, Taylor MI, Queiroga H, Carvalho G, Mendo S (2009) Development and application of microsatellites in Carcinus maenas: genetic differentiation between northern and central Portuguese populations. PLoS ONE 4, e7268
Development and application of microsatellites in Carcinus maenas: genetic differentiation between northern and central Portuguese populations.Crossref | GoogleScholarGoogle Scholar |

Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends in Ecology & Evolution 16, 142–147.
Chloroplast microsatellites: new tools for studies in plant ecology and evolution.Crossref | GoogleScholarGoogle Scholar |

Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram RM (2007) Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions. Bioinformatics 23, 1–4.
Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlGktLzF&md5=79dc83b1a2ce5a916c8f5b9f75c388beCAS |

Rajendrakumar P, Biswal AK, Balachandran SM, Sundaram RM (2008) In silico analysis of microsatellites in organellar genomes of major cereals for understanding their phylogenetic relationships. In Silico Biology 8, 87–104.

Ramirez-Carrozzi VR, Braas D, Bhatt DM, Cheng CS, Hong C, Doty KR, Black JC, Hoffmann A, Carey M, Smale ST (2009) A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128.
A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXps1ygurg%3D&md5=0fd70930df5e48b6ea959448f2ab67b4CAS |

Ramsay L, Macaulay M, Cardle L, Morgante M, degli Ivanissevich S, Maestri E, Powell W, Waugh R (1999) Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. The Plant Journal 17, 415–425.
Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1GgsLc%3D&md5=2e7cd0481c7bf87917a4d629f107f828CAS |

Ren TH, Chen F, Zou YT, Jia YH, Zhang HQ, Yan BJ, Ren ZL (2011) Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale. Genome 54, 316–326.
Evolutionary trends of microsatellites during the speciation process and phylogenetic relationships within the genus Secale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmvValsL0%3D&md5=efea50acfbf5baae59e7bfbb494f0f00CAS |

Roest Crollius H, Jaillon O, Dasilva C, Ozouf-Costaz C, Fizames C, Fischer C, Bouneau L, Billault A, Quetier F, Saurin W, Bernot A, Weissenbach J (2000) Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Research 10, 939–949.
Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvlsFygtA%3D%3D&md5=ea7808fefe20e236b98279be0188332bCAS |

Roorkiwal M, Grover A, Sharma PC (2009) Genome-wide analysis of conservation and divergence of microsatellites in rice. Molecular Genetics and Genomics 282, 205–215.
Genome-wide analysis of conservation and divergence of microsatellites in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVKlu7s%3D&md5=5131e8f46bd915d7404f108d5662d4a6CAS |

Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Research 20, 211–215.
Slippage synthesis of simple sequence DNA.Crossref | GoogleScholarGoogle Scholar |

Sharma RK, Bhardwaj P, Negi R, Mohapatra T, Ahuja PS (2009) Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.). BMC Plant Biology 9, 53
Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.).Crossref | GoogleScholarGoogle Scholar |

She C, Liu J, Diao Y, Hu Z, Song Y (2007) The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. Journal of Genetics and Genomics = Yi Chuan Xue Bao 34, 437–448.
The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsF2itLc%3D&md5=a78b3ebd7cce0e7b339ef7d0db5b68b8CAS |

Shin J, Yuan Z, Fordyce K, Sreeramoju P, Kent TS, Kim J, Wang V, Schneyer D, Weber TK (2007) A del T poly T (8) mutation in the 3′ untranslated region (UTR) of the CDK2–AP1 gene is functionally significant causing decreased mRNA stability resulting in decreased CDK2–AP1 expression in human microsatellite unstable (MSI) colorectal cancer (CRC). Surgery 142, 222–227.
A del T poly T (8) mutation in the 3′ untranslated region (UTR) of the CDK2–AP1 gene is functionally significant causing decreased mRNA stability resulting in decreased CDK2–AP1 expression in human microsatellite unstable (MSI) colorectal cancer (CRC).Crossref | GoogleScholarGoogle Scholar |

Sonah H, Deshmukh RK, Sharma A, Singh VP, Gupta DK, Gacche RN, Rana JC, Singh NK, Sharma TR (2011) Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS ONE 6, e21298
Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFals7k%3D&md5=2c760ee7fceed8fec12d2337e3faa900CAS |

Soranzo N, Provan J, Powell W (1999) An example of microsatellite length variation in the mitochondrial genome of conifers. Genome 42, 158–161.
An example of microsatellite length variation in the mitochondrial genome of conifers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsVyqtrk%3D&md5=646b00dab33a0b94d4785548a7efd1efCAS |

Sreenu VB, Kumar P, Nagaraju J, Nagarajaram HA (2007) Simple sequence repeats in mycobacterial genomes. Journal of Biosciences 32, 3–15.
Simple sequence repeats in mycobacterial genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFGhur4%3D&md5=8856dc54892021b45a6175f7736768c3CAS |

Subramanian S, Mishra RK, Singh L (2003) Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biology 4, R13
Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions.Crossref | GoogleScholarGoogle Scholar |

Sung W, Tucker A, Bergeron RD, Lynch M, Thomas WK (2010) Simple sequence repeat variation in the Daphnia pulex genome. BMC Genomics 11, 691–701.
Simple sequence repeat variation in the Daphnia pulex genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFylsrbK&md5=ffaba971ceca48d694c802d03dcf9143CAS |

Sureshkumar S, Todesco M, Schneeberger K, Harilal R, Balasubramanian S, Weigel D (2009) A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science 323, 1060–1063.
A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitVyntrw%3D&md5=ada9d71fe6855ea6661c1d6865598678CAS |

Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theoretical and Applied Genetics 104, 1092–1098.
Isolation and characterization of microsatellites in Brassica rapa L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVKkt7o%3D&md5=21fb665d1527cfaf9bebab9612d007e3CAS |

Tang Z, Fu S, Ren Z, Zou Y (2009) Rapid evolution of simple sequence repeat induced by allopolyploidization. Journal of Molecular Evolution 69, 217–228.
Rapid evolution of simple sequence repeat induced by allopolyploidization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlegs77J&md5=d28bf6813106ac9027bffa82a259818aCAS |

Tang ZX, Fu SL, Ren ZL, Zhou JP, Yan BJ, Zhang HQ (2008) Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat–rye amphiploids. Genome 51, 399–408.
Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat–rye amphiploids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmsVOju78%3D&md5=393a3da4f95198f0519e385f70c38534CAS |

Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biology 9, 137
Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek).Crossref | GoogleScholarGoogle Scholar |

Tay WT, Behere GT, Batterham P, Heckel DG (2010) Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes. BMC Evolutionary Biology 10, 144
Generation of microsatellite repeat families by RTE retrotransposons in lepidopteran genomes.Crossref | GoogleScholarGoogle Scholar |

Tian XJ, Strassmann JE, Queller DC (2011) Genome nucleotide composition shapes variation in simple sequence repeats. Molecular Biology and Evolution 28, 899–909.
Genome nucleotide composition shapes variation in simple sequence repeats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVSrug%3D%3D&md5=0416cb0b215b89b529fb43c082b50107CAS |

Toth G, Gaspari Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research 10, 967–981.
Microsatellites in different eukaryotic genomes: survey and analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFGjsb0%3D&md5=a7d2fdc198958800d0ef0e82348dc82bCAS |

Tremblay DC, Alexander G, Moseley S, Chadwick BP (2010) Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome. BMC Genomics 11, 632
Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome.Crossref | GoogleScholarGoogle Scholar |

Ueno S, Moriguchi Y, Uchiyama K, Ujino-Ihara T, Futamura N, Sakurai T, Shinohara K, Tsumura Y (2012) A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics 13, 136
A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslGqu73K&md5=f700eeb35b3d14bf2d255528c0e44426CAS |

Ueno S, Taguchi Y, Tsumura Y (2008) Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags. Genes & Genetic Systems 83, 179–187.
Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslOktL0%3D&md5=a89e6b3ed95f67e05f1f2d91d29f6c30CAS |

van der Velden AW, Thomas AAM (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. The International Journal of Biochemistry & Cell Biology 31, 87–106.
The role of the 5′ untranslated region of an mRNA in translation regulation during development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFSlu7c%3D&md5=8e35d9a2204f0cae1f528bde86056812CAS |

Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WF, Smith JSC, Doebley J (2002) Rate and pattern of mutation at microsatellite loci in maize. Molecular Biology and Evolution 19, 1251–1260.
Rate and pattern of mutation at microsatellite loci in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtF2ku7c%3D&md5=f57b3faae638b32e0a603027edbe1095CAS |

Viguera E, Canceill D, Ehrlich SD (2001) Replication slippage involves DNA polymerase pausing and dissociation. The EMBO Journal 20, 2587–2595.
Replication slippage involves DNA polymerase pausing and dissociation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFensrg%3D&md5=55b380eb5ec074ebdec4816589493d1cCAS |

Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ (2009) Unstable tandem repeats inpromoters confer transcriptional evolvability. Science 324, 1213–1216.
Unstable tandem repeats inpromoters confer transcriptional evolvability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsVGisLg%3D&md5=aa0d7921a5aabc619de87d84dd69daacCAS |

Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669–687.
Origin, biogenesis, and activity of plant microRNAs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvFGksbs%3D&md5=64c1a4fe5abea2e26c21e2aa87303a49CAS |

Wang SF, Wang XF, He QW, Liu XX, Xu WL, Li LB, Gao JW, Wang FD (2012) Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Plant Cell Reports 31, 1437–1447.
Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVelu7nL&md5=489f6847d2f364a726c43d5aaf7deff9CAS |

Wei WL, Qi XQ, Wang LH, Zhang YX, Hua W, Li DH, Lv HX, Zhang XR (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12, 451
Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlWjsL7M&md5=9a3f8b37efbeba380a5d8ecd7dc1539bCAS |

Wilder J, Hollocher H (2001) Mobile elements and the genesis of microsatellites in dipterans. Molecular Biology and Evolution 18, 384–392.
Mobile elements and the genesis of microsatellites in dipterans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvVKrtrk%3D&md5=dde744e69bc1efa134da5a6a9ed468e3CAS |

Xie FL, Burklew CE, Yang YF, Liu M, Xiao P, Zhang BH, Qiu DY (2012) De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta 236, 101–113.
De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptFChu7c%3D&md5=991900ea75d88197cc29ba8f2c15f57aCAS |

Xin D, Sun J, Wang J, Jiang H, Hu G, Liu C, Chen Q (2012) Identification and characterization of SSRs from soybean (Glycine max) ESTs. Molecular Biology Reports 39, 9047–9057.
Identification and characterization of SSRs from soybean (Glycine max) ESTs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVyksL7O&md5=c07cc3f26e6d2908ae954a833222f371CAS |

Yi G, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theoretical and Applied Genetics 114, 113–130.
Exploitation of pepper EST-SSRs and an SSR-based linkage map.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WltrnJ&md5=1e2e1a968ee5bc3a5052d7e566a13906CAS |

Yotoko KSC, Dornelas MC, Togni PD, Fonseca TC, Salzano FM, Bonatto SL, Freitas LB (2011) Does variation in genome sizes reflect adaptive or neutral processes? New clues from Passiflora. PLoS ONE 6, e18212
Does variation in genome sizes reflect adaptive or neutral processes? New clues from Passiflora.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFyqu7g%3D&md5=6be8ccb64c6e0aa5f20bfafd1bbf5251CAS |

Zardoya R, Vollmer DM, Craddock C, Streelman JT, Karl S, Meyer A (1996) Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proceedings. Biological Sciences 263, 1589–1598.
Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivVentA%3D%3D&md5=295d6416d66fec1a9b63d5343bbf477aCAS |

Zhang LD, Zuo KJ, Zhang F, Cao YF, Wang J, Zhang YD, Sun XF, Tang KX (2006) Conservation of noncoding microsatellites in plants: implication for gene regulation. BMC Genomics 7, 323–330.
Conservation of noncoding microsatellites in plants: implication for gene regulation.Crossref | GoogleScholarGoogle Scholar |

Zhang LQ, Liu DC, Yan ZH, Lan XJ, Zheng YL, Zhou YH (2004) Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China. Series C, Life Sciences 47, 553–561.
Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlKqs7Y%3D&md5=be20edb2ad1325c28992196df69f987cCAS |

Zou J, Fu D, Gong H, Qian W, Xia W, Pires JC, Li R, Long Y, Mason AS, Yang T-J, Lim YP, Park BS, Meng J (2011) De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a RIL population of Brassica napus derived from interspecific hybridization with B. rapa. The Plant Journal 68, 212–224.
De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a RIL population of Brassica napus derived from interspecific hybridization with B. rapa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCksrrP&md5=123d875c373fbd097e329c48b8f6c10bCAS |