Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Responses of the apple plant to CO2 enrichment: changes in photosynthesis, sorbitol, other soluble sugars, and starch

Q. Pan, Z. Wang and B. Quebedeaux

Australian Journal of Plant Physiology 25(3) 293 - 297
Published: 1998

Abstract

There is no information on the effects of elevated [CO2] on whole-plant photosynthesis and carbohydrate metabolism in apple (Malus domestica Borkh.) and other sorbitol-translocating plants. Experiments were conducted in controlled growth chambers to evaluate how increases in [CO2] affect plant photosynthesis and carbon partitioning into soluble sugars and starch in apple leaves. Apple plants (cv. Gala), 1-year-old, were exposed to [CO2] of 200, 360, 700, 1000, and 1600 µL L-1 up to 8 d. Whole-plant net photosynthetic rates were analysed daily after [CO2] treatments. Newly expanded mature leaves were sampled at 1, 2, 4, and 8 d after [CO2] treatments for sorbitol, sucrose, glucose, fructose, and starch analysis. Midday whole-plant net photosynthetic rates increased linearly with increasing [CO2], but the differences in whole-plant photosynthesis between CO2-enrichment and ambient [CO2] treatments were less significant as apple plants acclimated to high atmospheric [CO2] for 8 d. Increases in [CO2] significantly increased sorbitol and starch, but did not affect sucrose concentrations. As a result, the ratios of starch to sorbitol and starch to sucrose at 8 d after [CO2] treatments were increased from 0.05 and 0.06 to 0.8 and 1.6 as [CO2] increased from ambient [CO2] (360 µL L-1) to 1000 µL L-1 [CO2], respectively. The sorbitol to sucrose ratio also increased from 1.3 to 2.2 as [CO2] increased from 360 to 1000 µL L-1. Elevated [CO2] enhanced the photosynthesis of apple plants and altered carbohydrate accumulation in mature leaves in favour of starch and sorbitol over sucrose.

https://doi.org/10.1071/PP97097

© CSIRO 1998

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions