Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW (Open Access)

The genetic control of herkogamy

Jacques-Joseph Boucher A B , Hilary S. Ireland C , Ruiling Wang C , Karine M. David B and Robert J. Schaffer https://orcid.org/0000-0003-1272-667X A B *
+ Author Affiliations
- Author Affiliations

A The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, Motueka 7198, New Zealand.

B School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

C The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland 1142, New Zealand.


Handling Editor: Rana Munns

Functional Plant Biology 51, FP23315 https://doi.org/10.1071/FP23315
Submitted: 22 December 2023  Accepted: 14 April 2024  Published: 30 April 2024

© 2024 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.

Keywords: floral development, herkogamy, mating systems, phytohormones, pollination, stamen development, style development.

References

Acosta IF, Przybyl M (2019) Jasmonate signaling during Arabidopsis stamen maturation. Plant and Cell Physiology 60(12), 2648-2659.
| Crossref | Google Scholar | PubMed |

Albrecht M, Schmid B, Hautier Y, Müller CB (2012) Diverse pollinator communities enhance plant reproductive success. Proceedings of the Royal Society B: Biological Sciences 279(1748), 4845-4852.
| Crossref | Google Scholar |

Almeida NM, Castro CC, Leite AV, Novo RR, Machado IC (2013) Floral polymorphism in Chamaecrista flexuosa (Fabaceae-Caesalpinioideae): a possible case of atypical enantiostyly? Annals of Botany 112(6), 1117-1123.
| Crossref | Google Scholar | PubMed |

Almeida NM, Souza JT, Oliveira CRS, Bezerra TT, Novo RR, Siqueira Filho JA, Oliveira PE, Castro CC (2018) Functional dimorphic enantiostyly in monomorphic enantiostylous species of the subtribe Cassiinae (Fabaceae-Caesalpinioideae). Plant Biology 20(4), 797-801.
| Crossref | Google Scholar | PubMed |

Alvarez J, Smyth DR (2002) CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. International Journal of Plant Sciences 163(1), 17-41.
| Crossref | Google Scholar |

Alvarez JP, Goldshmidt A, Efroni I, Bowman JL, Eshed Y (2009) The NGATHA distal organ development genes are essential for style specification in Arabidopsis. The Plant Cell 21(5), 1373-1393.
| Crossref | Google Scholar | PubMed |

Arunkumar R, Wang W, Wright SI, Barrett SCH (2017) The genetic architecture of tristyly and its breakdown to self-fertilization. Molecular Ecology 26(3), 752-765.
| Crossref | Google Scholar | PubMed |

Bai Q, Wang L, Huang S, Ali K, Li G, Ren H, Zheng B (2023) The receptor-like kinase EMS1 and BRI1 coordinately regulate stamen elongation via the transcription factors BES1/BZR1 in Arabidopsis. Plant Science 331, 111673.
| Crossref | Google Scholar | PubMed |

Barrett SCH (2002) Sexual interference of the floral kind. Heredity 88(2), 154-159.
| Crossref | Google Scholar | PubMed |

Barrett SCH, Harder LD (2005) The evolution of polymorphic sexual systems in daffodils (Narcissus). New Phytologist 165(1), 45-53.
| Crossref | Google Scholar | PubMed |

Barrett SC, Jesson LK, Baker AM (2000) The evolution and function of stylar polymorphisms in flowering plants. Annals of Botany 85(suppl_1), 253-265.
| Crossref | Google Scholar |

Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum x L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147(2), 861-877.
| Crossref | Google Scholar | PubMed |

Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS ONE 7(10), e48198.
| Crossref | Google Scholar | PubMed |

Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112(1), 1-20.
| Crossref | Google Scholar | PubMed |

Bowman JL, Baum SF, Eshed Y, Putterill J, Alvarez J (1999) Molecular genetics of gynoecium development in Arabidopsis. Current Topics in Developmental Biology 45, 155-205.
| Crossref | Google Scholar | PubMed |

Brunet J, Eckert CG (1998) Effects of floral morphology and display on outcrossing in Blue Columbine, Aquilegia caerulea (Ranunculaceae). Functional Ecology 12, 596-606.
| Crossref | Google Scholar |

Brys R, Jacquemyn H (2012) Effects of human-mediated pollinator impoverishment on floral traits and mating patterns in a short-lived herb: an experimental approach. Functional Ecology 26(1), 189-197.
| Crossref | Google Scholar |

Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. The Plant Cell 20(7), 1760-1774.
| Crossref | Google Scholar | PubMed |

Cecchetti V, Celebrin D, Napoli N, Ghelli R, Brunetti P, Costantino P, Cardarelli M (2017) An auxin maximum in the middle layer controls stamen development and pollen maturation in Arabidopsis. New Phytologist 213(3), 1194-1207.
| Crossref | Google Scholar | PubMed |

Chae K, Isaacs CG, Reeves PH, Maloney GS, Muday GK, Nagpal P, Reed JW (2012) Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. The Plant Journal 71(4), 684-697.
| Crossref | Google Scholar | PubMed |

Chen K-Y, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318(5850), 643-645.
| Crossref | Google Scholar | PubMed |

Chen W, Lv M, Wang Y, Wang P-A, Cui Y, Li M, Wang R, Gou X, Li J (2019) BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana. Nature Communications 10(1), 4164.
| Crossref | Google Scholar | PubMed |

Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131(5), 1055-1064.
| Crossref | Google Scholar | PubMed |

Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genetics 5(3), e1000440.
| Crossref | Google Scholar | PubMed |

Cheng M-Z, Gong C, Zhang B, Qu W, Qi H-N, Chen X-L, Wang X-Y, Zhang Y, Liu J-Y, Ding X-D, Qiu Y-W, Wang A-X (2021) Morphological and anatomical characteristics of exserted stigma sterility and the location and function of SlLst (Solanum lycopersicum Long styles) gene in tomato. Theoretical and Applied Genetics 134(2), 505-518.
| Crossref | Google Scholar | PubMed |

Cho JLY, Ding P (2021) Floral morphology and pollination process of red-fleshed dragon fruit (Hylocereus polyrhizus) grown in an open field. Horticultural Science and Technology 39(3), 277-293.
| Crossref | Google Scholar |

Colombo M, Brambilla V, Marcheselli R, Caporali E, Kater MM, Colombo L (2010) A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology 337(2), 294-302.
| Crossref | Google Scholar | PubMed |

Conner JK, Sterling A (1996) Selection for independence of floral and vegetative traits: evidence from correlation patterns in five species. Canadian Journal of Botany 74(4), 642-644.
| Crossref | Google Scholar |

Dart SR, Samis KE, Austen E, Eckert CG (2012) Broad geographic covariation between floral traits and the mating system in Camissoniopsis cheiranthifolia (Onagraceae): multiple stable mixed mating systems across the species’ range? Annals of Botany 109(3), 599-611.
| Crossref | Google Scholar | PubMed |

Dresselhaus T, Schneitz K (2014) The role of auxin for reproductive organ patterning and development. In ‘Auxin and its role in plant development’. (Eds E Zažímalová, J Petrášek, E Benková) pp. 213–243. (Springer)

D’Arcy WG (1996) Anthers and stamens and what they do. In ‘The anther’. (Eds WG D’Arcy, RC Keating) pp. 1–24. (Cambridge University Press: UK)

Eckert CG, Ozimec B, Herlihy CR, Griffin CA, Routley MB (2009) Floral morphology mediates temporal variation in the mating system of a self-compatible plant. Ecology 90(6), 1540-1548.
| Crossref | Google Scholar | PubMed |

Eklund DM, Thelander M, Landberg K, Ståldal V, Nilsson A, Johansson M, Valsecchi I, Pederson ERA, Kowalczyk M, Ljung K, Ronne H, Sundberg E (2010) Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137(8), 1275-1284.
| Crossref | Google Scholar | PubMed |

Fetscher AE (2001) Resolution of male-female conflict in an hermaphroditic flower. Proceedings of the Royal Society of London. Series B: Biological Sciences 268(1466), 525-529.
| Crossref | Google Scholar |

Fontaine C, Dajoz I, Meriguet J, Loreau M (2006) Functional diversity of plant–pollinator interaction webs enhances the persistence of plant communities. PLoS Biology 4(1), e1.
| Crossref | Google Scholar | PubMed |

Fourquin C, Ferrándiz C (2014) The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytologist 202(3), 1001-1013.
| Crossref | Google Scholar | PubMed |

Fægri K, Van der Pijl L (1979) A short history of the study of pollination ecology. In ‘The principles of pollination ecology’. (Eds K Fægri, L Van der Pijl) pp. 1–3. (Pergamon)

Galen C, Gregory T (1989) Interspecific pollen transfer as a mechanism of competition: consequences of foreign pollen contamination for seed set in the alpine wildflower, Polemonium viscosum. Oecologia 81, 120-123.
| Crossref | Google Scholar | PubMed |

Gastaldi V, Lucero LE, Ferrero LV, Ariel FD, Gonzalez DH (2020) Class-I TCP transcription factors activate the SAUR63 gene subfamily in gibberellin-dependent stamen filament elongation. Plant Physiology 182(4), 2096-2110.
| Crossref | Google Scholar | PubMed |

Gastaldi V, Alem AL, Mansilla N, Ariel FD, Viola IL, Lucero LE, Gonzalez DH (2023) BREVIPEDICELLUS/KNAT1 targets TCP15 to modulate filament elongation during Arabidopsis late stamen development. Plant Physiology 191(1), 29-34.
| Crossref | Google Scholar | PubMed |

Georgiady MS, Lord EM (2002) Evolution of the inbred flower form in the currant tomato, Lycopersicon pimpinellifolium. International Journal of Plant Sciences 163(4), 531-541.
| Crossref | Google Scholar |

Georgiady MS, Whitkus RW, Lord EM (2002) Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics 161(1), 333-344.
| Crossref | Google Scholar | PubMed |

Ghelli R, Brunetti P, Marzi D, Cecchetti V, Costantini M, Lanzoni-Rossi M, Scaglia Linhares F, Costantino P, Cardarelli M (2023) The full-length Auxin Response Factor 8 isoform ARF8.1 controls pollen cell wall formation and directly regulates TDF1, AMS and MS188 expression. The Plant Journal 113(4), 851-865.
| Crossref | Google Scholar | PubMed |

Gorguet B, Eggink PM, Ocaña J, Tiwari A, Schipper D, Finkers R, Visser RGF, van Heusden AW (2008) Mapping and characterization of novel parthenocarpy QTLs in tomato. Theoretical and Applied Genetics 116, 755-767.
| Crossref | Google Scholar | PubMed |

Groszmann M, Paicu T, Smyth DR (2008) Functional domains of SPATULA, a bHLH transcription factor involved in carpel and fruit development in Arabidopsis. The Plant Journal 55(1), 40-52.
| Crossref | Google Scholar | PubMed |

Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Current Biology 15(21), 1899-1911.
| Crossref | Google Scholar | PubMed |

Henning PM, Shore JS, McCubbin AG (2020) Transcriptome and network analyses of heterostyly in Turnera subulata provide mechanistic insights: are S-loci a red-light for pistil elongation? Plants 9(6), 713.
| Crossref | Google Scholar | PubMed |

Herlihy CR, Eckert CG (2007) Evolutionary analysis of a key floral trait in Aquilegia canadensis (Ranunculaceae): genetic variation in herkogamy and its effect on the mating system. Evolution 61(7), 1661-1674.
| Crossref | Google Scholar | PubMed |

Herrera-Ubaldo H, Campos SE, Luna-García V, Zúñiga-Mayo VM, Armas-Caballero G, DeLuna A, Marsch-Martínez N, de Folter S (2018) An interaction map of transcription factors controlling gynoecium development in Arabidopsis. BioRxiv 500736.
| Crossref | Google Scholar |

Herrera-Ubaldo H, Campos SE, López-Gómez P, Luna-García V, Zúñiga-Mayo VM, Armas-Caballero GE, González-Aguilera KL, DeLuna A, Marsch-Martínez N, Espinosa-Soto C, de Folter S (2023) The protein–protein interaction landscape of transcription factors during gynoecium development in Arabidopsis. Molecular Plant 16, 260-278.
| Crossref | Google Scholar | PubMed |

Herrera CM (2001) Deconstructing a floral phenotype: do pollinators select for corolla integration in Lavandula latifolia? Journal of Evolutionary Biology 14(4), 574-584.
| Crossref | Google Scholar |

Huang H, Gong Y, Liu B, Wu D, Zhang M, Xie D, Song S (2020) The DELLA proteins interact with MYB21 and MYB24 to regulate filament elongation in Arabidopsis. BMC Plant Biology 20(1), 64.
| Crossref | Google Scholar | PubMed |

Huu CN, Kappel C, Keller B, Sicard A, Takebayashi Y, Breuninger H, Nowak MD, Bäurle I, Himmelbach A, Burkart M, Ebbing-Lohaus T, Sakakibara H, Altschmied L, Conti E, Lenhard M (2016) Presence versus absence of CYP734A50 underlies the style-length dimorphism in primroses. eLife 5, e17956.
| Crossref | Google Scholar | PubMed |

Huu CN, Plaschil S, Himmelbach A, Kappel C, Lenhard M (2022) Female self-incompatibility type in heterostylous Primula is determined by the brassinosteroid-inactivating cytochrome P450 CYP734A50. Current Biology 32(3), 671-676.e5.
| Crossref | Google Scholar | PubMed |

Indriolo E, Safavian D, Goring DR (2014) The ARC1 E3 ligase promotes two different self-pollen avoidance traits in Arabidopsis. The Plant Cell 26(4), 1525-1543.
| Crossref | Google Scholar | PubMed |

Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. The Plant Cell 13(10), 2191-2209.
| Crossref | Google Scholar | PubMed |

Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430(6997), 356-360.
| Crossref | Google Scholar | PubMed |

Ito T, Ng K-H, Lim T-S, Yu H, Meyerowitz EM (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. The Plant Cell 19(11), 3516-3529.
| Crossref | Google Scholar | PubMed |

Jiménez-López FJ, Arista M, Talavera M, Pannell JR, Ortiz PL (2019) Heritabilities of lateral and vertical herkogamy in Lysimachia arvensis. Plant Species Biology 34(1), 31-37.
| Crossref | Google Scholar |

Kappel C, Huu CN, Lenhard M (2017) A short story gets longer: recent insights into the molecular basis of heterostyly. Journal of Experimental Botany 68(21-22), 5719-5730.
| Crossref | Google Scholar | PubMed |

Karron JD, Jackson RT, Thumser NN, Schlicht SL (1997) Outcrossing rates of individual Mimulus ringens genets are correlated with anther-stigma separation. Heredity 79(4), 365-370.
| Crossref | Google Scholar |

Kerner A, Oliver F (1902) ‘The natural history of plants, vol. 2.’ (Blackie and Son: London, UK)

Kulbaba MW, Worley AC (2008) Floral design in Polemonium brandegei (Polemoniaceae): genetic and phenotypic variation under hawkmoth and hummingbird pollination. International Journal of Plant Sciences 169(4), 509-522.
| Crossref | Google Scholar |

Kuusk S, Sohlberg JJ, Magnus Eklund D, Sundberg E (2006) Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. The Plant Journal 47(1), 99-111.
| Crossref | Google Scholar | PubMed |

Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37, 1210-1226.
| Crossref | Google Scholar | PubMed |

Li Q-F, Wang C, Jiang L, Li S, Sun SSM, He J-X (2012) An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling 5(244), ra72.
| Crossref | Google Scholar |

Li Q-F, Lu J, Yu J-W, Zhang C-Q, He J-X, Liu Q-Q (2018) The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochimica et Biophysica Acta (BBA) – Gene Regulatory Mechanisms 1861(6), 561-571.
| Crossref | Google Scholar | PubMed |

Li W, Huang X, Zou J, Wu J, Jiao H, Peng X, Sun M-X (2020) Three STIGMA AND STYLE STYLISTs pattern the fine architectures of apical gynoecium and are critical for male gametophyte-pistil interaction. Current Biology 30(23), 4780-4788.e5.
| Crossref | Google Scholar | PubMed |

Liu Z, Franks RG, Klink VP (2000) Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. The Plant Cell 12(10), 1879-1891.
| Crossref | Google Scholar | PubMed |

Liu N, Wu S, Van Houten J, Wang Y, Ding B, Fei Z, Clarke TH, Reed JW, Van Der Knaap E (2014) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. Journal of Experimental Botany 65(9), 2507-2520.
| Crossref | Google Scholar | PubMed |

Liu S-J, Wu L-Y, Huang S-Q (2016) Shortened anther–stigma distance reduces compatible pollination in two distylous Primula species. Journal of Plant Ecology 9(2), 224-232.
| Crossref | Google Scholar |

Luo Y, Widmer A (2013) Herkogamy and its effects on mating patterns in Arabidopsis thaliana. PLoS ONE 8(2), e57902.
| Crossref | Google Scholar | PubMed |

Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annual Review of Plant Biology 56, 393-434.
| Crossref | Google Scholar | PubMed |

Mandaokar A, Thines B, Shin B, Markus Lange B, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. The Plant Journal 46(6), 984-1008.
| Crossref | Google Scholar | PubMed |

Marsch-Martínez N, de Folter S (2016) Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology 29, 104-114.
| Crossref | Google Scholar | PubMed |

Marsch-Martínez N, Ramos-Cruz D, Irepan Reyes-Olalde J, Lozano-Sotomayor P, Zúñiga-Mayo VM, de Folter S (2012) The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. The Plant Journal 72(2), 222-234.
| Crossref | Google Scholar | PubMed |

Matzke CM, Hamam HJ, Henning PM, Dougherty K, Shore JS, Neff MM, McCubbin AG (2021) Pistil mating type and morphology are mediated by the brassinosteroid inactivating activity of the S-locus gene BAHD in heterostylous Turnera species. International Journal of Molecular Sciences 22(19), 10603.
| Crossref | Google Scholar | PubMed |

Moeller DA (2006) Geographic structure of pollinator communities, reproductive assurance, and the evolution of self-pollination. Ecology 87(6), 1510-1522.
| Crossref | Google Scholar | PubMed |

Motten AF, Stone JL (2000) Heritability of stigma position and the effect of stigma-anther separation on outcrossing in a predominantly self-fertilizing weed, Datura stramonium (Solanaceae). American Journal of Botany 87(3), 339-347.
| Crossref | Google Scholar | PubMed |

Müller H (1883) ‘The fertilisation of flowers.’ (Macmillan)

Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132(18), 4107-4118.
| Crossref | Google Scholar | PubMed |

Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proceedings of the National Academy of Sciences 96(26), 15316-15323.
| Crossref | Google Scholar |

Nowak MD, Russo G, Schlapbach R, Huu CN, Lenhard M, Conti E (2015) The draft genome of Primula veris yields insights into the molecular basis of heterostyly. Genome Biology 16(1), 12.
| Crossref | Google Scholar |

Ollerton J (2017) Pollinator diversity: distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics 48, 353-376.
| Crossref | Google Scholar |

Opedal ØH (2018) Herkogamy, a principal functional trait of plant reproductive biology. International Journal of Plant Sciences 179(9), 677-687.
| Crossref | Google Scholar |

Opedal ØH, Albertsen E, Armbruster WS, Pérez-Barrales R, Falahati-Anbaran M, Pélabon C (2016) Evolutionary consequences of ecological factors: pollinator reliability predicts mating-system traits of a perennial plant. Ecology Letters 19(12), 1486-1495.
| Crossref | Google Scholar | PubMed |

Opedal ØH, Bolstad GH, Hansen TF, Armbruster WS, Pélabon C (2017) The evolvability of herkogamy: quantifying the evolutionary potential of a composite trait. Evolution 71(6), 1572-1586.
| Crossref | Google Scholar | PubMed |

Opedal ØH, Hildesheim LS, Armbruster WS (2022) Evolvability and constraint in the evolution of three-dimensional flower morphology. American Journal of Botany 109(11), 1906-1917.
| Crossref | Google Scholar | PubMed |

Park J-H, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. The Plant Journal 31(1), 1-12.
| Crossref | Google Scholar | PubMed |

Peralta IE, Knapp S, Spooner DM (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Systematic Botany 30(2), 424-434.
| Crossref | Google Scholar |

Plackett ARG, Thomas SG, Wilson ZA, Hedden P (2011) Gibberellin control of stamen development: a fertile field. Trends in Plant Science 16(10), 568-578.
| Crossref | Google Scholar | PubMed |

Qi T, Huang H, Song S, Xie D (2015) Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. The Plant Cell 27(6), 1620-1633.
| Crossref | Google Scholar | PubMed |

Reeves PH, Ellis CM, Ploense SE, Wu M-F, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW (2012) A regulatory network for coordinated flower maturation. PLoS Genetics 8(2), e1002506.
| Crossref | Google Scholar | PubMed |

Riccini A (2019) Phenotypic and genotypic characterization of European tomato (Solanum lycopersicum L.) landraces for the study of traits related to the reproductive process. Università degli studi della Tuscia, Viterbo, Italy.

Riccini A, Picarella ME, De Angelis F, Mazzucato A (2021) Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. Plant Molecular Biology 105, 263-285.
| Crossref | Google Scholar | PubMed |

Rick CM (1982) The potential of exotic germplasm for tomato improvement. In ‘Plant Improvement and Somatic Cell Genetics’. (Eds IK Vasil, WR Scowcroft, KJ Frey) pp. 1–28. (Academic Press)

Rick CM, Dempsey WH (1969) Position of the stigma in relation to fruit setting of the tomato. Botanical Gazette 130(3), 180-186.
| Crossref | Google Scholar |

Rick CM, Lamm R (1955) Biosystematic studies on the status of Lycopersicon chilense. American Journal of Botany 663-675.
| Crossref | Google Scholar |

Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Systematics and Evolution 127, 139-170.
| Crossref | Google Scholar |

Rick CM, Holle M, Thorp RW (1978) Rates of cross-pollination in Lycopersicon pimpinellifolium: impact of genetic variation in floral characters. Plant Systematics and Evolution 129, 31-44.
| Crossref | Google Scholar |

Rick CM, Chetelat RT (1991) The breakdown of self-incompatibility in Lycopersicon hirsutum. In ‘Solanaceae III: taxonomy, chemistry, evolution’. (Eds JG Hawkes et al.) pp. 253–256. (Royal Botanic Gardens for the Linnean Society of London)

Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillips AL (2008a) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. The Plant Cell 20(9), 2420-2436.
| Crossref | Google Scholar | PubMed |

Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008b) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. The Plant Journal 53(3), 488-504.
| Crossref | Google Scholar | PubMed |

Rubio-Somoza I, Weigel D (2013) Coordination of flower maturation by a regulatory circuit of three microRNAs. PLoS Genetics 9(3), e1003374.
| Crossref | Google Scholar | PubMed |

Ruiz-Martín J, Santos-Gally R, Escudero M, Midgley JJ, Pérez-Barrales R, Arroyo J (2018) Style polymorphism in Linum (Linaceae): a case of Mediterranean parallel evolution? Plant Biology 20, 100-111.
| Crossref | Google Scholar | PubMed |

Saeed A, Hayat K, Khan A, Iqbal S (2007) Heat tolerance studies in tomato (Lycopersicon esculentum Mill.). International Journal of Agriculture & Biology 9(4), 649-652.
| Google Scholar |

Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, Miyazawa Y, Takahashi H, Watanabe M, Higashitani A (2010) Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences 107(19), 8569-8574.
| Crossref | Google Scholar |

Sauquet H, Von Balthazar M, Magallón S, Doyle JA, Endress PK, Bailes EJ, Barroso de Morais E, Bull-Hereñu K, Carrive L, Chartier M, et al. (2017) The ancestral flower of angiosperms and its early diversification. Nature Communications 8(1), 16047.
| Crossref | Google Scholar |

Shang L, Song J, Yu H, Wang X, Yu C, Wang Y, Li F, Lu Y, Wang T, Ouyang B, Zhang J, Larkin RM, Ye Z, Zhang Y (2021) A mutation in a C2H2-type zinc finger transcription factor contributed to the transition toward self-pollination in cultivated tomato. The Plant Cell 33(10), 3293-3308.
| Crossref | Google Scholar | PubMed |

Shore JS, Hamam HJ, Chafe PDJ, Labonne JDJ, Henning PM, McCubbin AG (2019) The long and short of the S-locus in Turnera (Passifloraceae). New Phytologist 224(3), 1316-1329.
| Crossref | Google Scholar | PubMed |

Sieburth LE, Meyerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. The Plant Cell 9(3), 355-365.
| Crossref | Google Scholar | PubMed |

Sohlberg JJ, Myrenås M, Kuusk S, Lagercrantz U, Kowalczyk M, Sandberg G, Sundberg E (2006) STY1 regulates auxin homeostasis and affects apical–basal patterning of the Arabidopsis gynoecium. The Plant Journal 47(1), 112-123.
| Crossref | Google Scholar | PubMed |

Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. The Plant Cell 23(3), 1000-1013.
| Crossref | Google Scholar | PubMed |

Song S, Qi T, Huang H, Xie D (2013) Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Molecular Plant 6(4), 1065-1073.
| Crossref | Google Scholar | PubMed |

Spartz AK, Ren H, Park MY, Grandt KN, Lee SH, Murphy AS, Sussman MR, Overvoorde PJ, Gray WM (2014) SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. The Plant Cell 26(5), 2129-2142.
| Crossref | Google Scholar | PubMed |

Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proceedings of the National Academy of Sciences 97(19), 10625-10630.
| Crossref | Google Scholar |

Ståldal V, Sundberg E (2009) The role of auxin in style development and apical-basal patterning of the Arabidopsis thaliana gynoecium. Plant Signaling & Behavior 4(2), 83-85.
| Crossref | Google Scholar | PubMed |

Ståldal V, Sohlberg JJ, Eklund DM, Ljung K, Sundberg E (2008) Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium. New Phytologist 180(4), 798-808.
| Crossref | Google Scholar | PubMed |

Sundberg E, Ferrándiz C (2018) Gynoecium patterning in Arabidopsis: a basic plan behind a complex structure. In ‘Fruit development and seed dispersal’. (Ed. L Østergaard) pp. 35–69. (Wiley: New York, USA)

Tabata R, Ikezaki M, Fujibe T, Aida M, Tian C-E, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant and Cell Physiology 51(1), 164-175.
| Crossref | Google Scholar | PubMed |

Takano-Kai N, Doi K, Yoshimura A (2011) GS3 participates in stigma exsertion as well as seed length in rice. Breeding Science 61(3), 244-250.
| Crossref | Google Scholar |

Takebayashi N, Wolf DE, Delph LF (2006) Effect of variation in herkogamy on outcrossing within a population of Gilia achilleifolia. Heredity 96(2), 159-165.
| Crossref | Google Scholar | PubMed |

Tashiro S, Tian C-e, Watahiki MK, Yamamoto KT (2009) Changes in growth kinetics of stamen filaments cause inefficient pollination in massugu2, an auxin insensitive, dominant mutant of Arabidopsis thaliana. Physiologia Plantarum 137(2), 175-187.
| Crossref | Google Scholar | PubMed |

Thomson B, Wellmer F (2019) Molecular regulation of flower development. In ‘Current topics in developmental biology, Vol. 131’. (Ed. U Grossniklaus) pp. 185–210. (Academic Press) 10.1016/bs.ctdb.2018.11.007

Toräng P, Vikström L, Wunder J, Wötzel S, Coupland G, Ågren J (2017) Evolution of the selfing syndrome: anther orientation and herkogamy together determine reproductive assurance in a self-compatible plant. Evolution 71(9), 2206-2218.
| Crossref | Google Scholar | PubMed |

Trigueros M, Navarrete-Gómez M, Sato S, Christensen SK, Pelaz S, Weigel D, Yanofsky MF, Ferrándiz C (2009) The NGATHA genes direct style development in the Arabidopsis gynoecium. The Plant Cell 21(5), 1394-1409.
| Crossref | Google Scholar | PubMed |

Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T-P (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiology 135(2), 1008-1019.
| Crossref | Google Scholar | PubMed |

Ushijima K, Nakano R, Bando M, Shigezane Y, Ikeda K, Namba Y, Kume S, Kitabata T, Mori H, Kubo Y (2012) Isolation of the floral morph-related genes in heterostylous flax (Linum grandiflorum): the genetic polymorphism and the transcriptional and post-transcriptional regulations of the S locus. The Plant Journal 69(2), 317-331.
| Crossref | Google Scholar | PubMed |

Van Etten ML, Brunet J (2013) The impact of global warming on floral traits that affect the selfing rate in a high-altitude plant. International Journal of Plant Sciences 174(8), 1099-1108.
| Crossref | Google Scholar |

Vosters SL, Jewell CP, Sherman NA, Einterz F, Blackman BK, Moyle LC (2014) The timing of molecular and morphological changes underlying reproductive transitions in wild tomatoes (Solanum sect. Lycopersicon). Molecular Ecology 23(8), 1965-1978.
| Crossref | Google Scholar | PubMed |

Waser NM, Price MV (1991) Reproductive costs of self-pollination in Ipomopsis aggregata (Polemoniaceae): are ovules usurped? American Journal of Botany 78(8), 1036-1043.
| Crossref | Google Scholar |

Webb CJ, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand Journal of Botany 24(1), 163-178.
| Crossref | Google Scholar |

Weinig C (2002) Phytochrome photoreceptors mediate plasticity to light quality in flowers of the Brassicaceae. American Journal of Botany 89(2), 230-235.
| Crossref | Google Scholar | PubMed |

Wu M-F, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133(21), 4211-4218.
| Crossref | Google Scholar | PubMed |

Wu M, Bian X, Huang B, Du Y, Hu S, Wang Y, Shen J, Wu S (2024) HD-Zip proteins modify floral structures for self-pollination in tomato. Science 384(6691), 124-130.
| Crossref | Google Scholar |

Xie D-X, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280(5366), 1091-1094.
| Crossref | Google Scholar | PubMed |

Zažímalová E, Petrášek J, Benková E (2014) ‘Auxin and its role in plant development.’ (Springer)

Zhang Y, Chen Y, Zhou Y, Zhang J, Bai H, Zheng C (2020) Comparative transcriptome reveals the genes’ adaption to herkogamy of Lumnitzera littorea (Jack) Voigt. Frontiers in Genetics 11, 584817.
| Crossref | Google Scholar |