Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE (Open Access)

Low-level CAM photosynthesis in a succulent-leaved member of the Urticaceae, Pilea peperomioides

Klaus Winter https://orcid.org/0000-0002-0448-2807 A C , Milton Garcia A , Aurelio Virgo A and J. Andrew C. Smith https://orcid.org/0000-0001-9188-0258 B
+ Author Affiliations
- Author Affiliations

A Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama.

B Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.

C Corresponding author. Email: winterk@si.edu

Functional Plant Biology 48(7) 683-690 https://doi.org/10.1071/FP20151
Submitted: 2 June 2020  Accepted: 28 October 2020   Published: 8 December 2020

Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND

Abstract

Pilea peperomioides Diels (Urticaceae) is a semi-succulent herbaceous species native to south-western China that has become popular in cultivation as an ornamental plant. To investigate whether this species possesses the capacity for CAM photosynthesis, measurements were made of CO2 gas exchange and titratable acidity in plants under both well-watered and water-deficit conditions. Plants were found to assimilate CO2 almost exclusively in the light via C3 photosynthesis. However, distinct transient reductions in the rate of net nocturnal CO2 release were consistently observed during the course of the dark period, and under water-deficit conditions one plant exhibited a brief period of net nocturnal CO2 uptake, providing unequivocal evidence of CAM activity. Furthermore, nocturnal increases in titratable acidity in both leaf laminas and petioles were observed in all plants exposed to wet–dry–wet cycles. This is the first report of CAM in the family Urticaceae. The results are discussed in relation to the phylogenetic position of Pilea and the partially shaded montane habitats in which this species is typically found. An updated list of all plant families currently known to contain species with CAM is presented.

Keywords: CAM photosynthesis, Chinese money plant, CO2 fixation, drought stress, nettle, photosynthesis, Pilea peperomioides, succulence, tissue acidity, Urticaceae.


References

APG IV (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: AGP IV. Botanical Journal of the Linnean Society 181, 1–20.
An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: AGP IV.Crossref | GoogleScholarGoogle Scholar |

Borland AM, Griffiths H (1997) A comparative study on the regulation of C3 and C4 carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana and the C3-CAM intermediate Clusia minor. Planta 201, 368–378.
A comparative study on the regulation of C3 and C4 carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana and the C3-CAM intermediate Clusia minor.Crossref | GoogleScholarGoogle Scholar | 19343414PubMed |

Borland AM, Barrera Zambrano VA, Ceusters J, Shorrock K (2011) The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. New Phytologist 191, 619–633.
The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world.Crossref | GoogleScholarGoogle Scholar | 21679188PubMed |

Brilhaus D, Bräutigam A, Mettler-Altmann T, Winter K, Weber APM (2016) Reversible burst of transcriptional changes during induction of crassulacean acid metabolism in Talinum triangulare. Plant Physiology 170, 102–122.
Reversible burst of transcriptional changes during induction of crassulacean acid metabolism in Talinum triangulare.Crossref | GoogleScholarGoogle Scholar | 26530316PubMed |

Cheung CYM, Poolman MG, Fell DA, Ratcliffe RG, Sweetlove LJ (2014) A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in C3 and crassulacean acid metabolism leaves. Plant Physiology 165, 917–929.
A diel flux balance model captures interactions between light and dark metabolism during day-night cycles in C3 and crassulacean acid metabolism leaves.Crossref | GoogleScholarGoogle Scholar |

Crayn DM, Winter K, Schulte K, Smith JAC (2015) Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species. Botanical Journal of the Linnean Society 178, 169–221.
Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species.Crossref | GoogleScholarGoogle Scholar |

de Luca P, Alfani A, Virzo de Santo A (1977) CAM, transpiration, and adaptive mechanisms to xeric environments in the succulent Cucurbitaceae. Botanical Gazette 138, 474–478.
CAM, transpiration, and adaptive mechanisms to xeric environments in the succulent Cucurbitaceae.Crossref | GoogleScholarGoogle Scholar |

Diels L (1912) Plantae Chinenses Forrestianae. New and imperfectly known species. Notes from the Royal Botanic Garden Edinburgh 5, 161–304.

Dransfield J, Dransfield S (1984) Pilea peperomioides in China. The Kew Magazine 1, 114

Gaur YD (1968) Preliminary studies on titratable acidity in xerophytic plants: Salvadora persica Linn. and Prosopis juliflora D.C. Experientia 24, 239–240.
Preliminary studies on titratable acidity in xerophytic plants: Salvadora persica Linn. and Prosopis juliflora D.C.Crossref | GoogleScholarGoogle Scholar | 5661414PubMed |

Guralnick LJ, Jackson MD (2001) The occurrence and phylogenetics of crassulacean acid metabolism in the Portulacaceae. International Journal of Plant Sciences 162, 257–262.
The occurrence and phylogenetics of crassulacean acid metabolism in the Portulacaceae.Crossref | GoogleScholarGoogle Scholar |

Guralnick LJ, Ting IP, Lord EM (1986) Crassulacean acid metabolism in the Gesneriaceae. American Journal of Botany 73, 336–345.
Crassulacean acid metabolism in the Gesneriaceae.Crossref | GoogleScholarGoogle Scholar |

Hanscom Z, Ting IP (1978) Irrigation magnifies CAM-photosynthesis in Opuntia basilaris (Cactaceae). Oecologia 33, 1–15.
Irrigation magnifies CAM-photosynthesis in Opuntia basilaris (Cactaceae).Crossref | GoogleScholarGoogle Scholar | 28309263PubMed |

Herrera A, Delgado J, Paraguatey I (1991) Occurrence of inducible crassulacean acid metabolism in leaves of Talinum triangulare (Portulacaceae). Journal of Experimental Botany 42, 493–499.
Occurrence of inducible crassulacean acid metabolism in leaves of Talinum triangulare (Portulacaceae).Crossref | GoogleScholarGoogle Scholar |

Heyduk K, McKain MR, Lalani F, Leebens-Mack J (2016) Evolution of a CAM anatomy predates the origins of crassulacean acid metabolism in the Agavoideae (Asparagaceae). Molecular Phylogenetics and Evolution 105, 102–113.
Evolution of a CAM anatomy predates the origins of crassulacean acid metabolism in the Agavoideae (Asparagaceae).Crossref | GoogleScholarGoogle Scholar | 27591171PubMed |

Ho C-L, Chiang J-M, Lin T-C, Martin CE (2019) First report of C4/CAM-cycling photosynthetic pathway in a succulent grass, Spinifex littoreus (Brum. F.) Merr., in coastal regions of Taiwan. Flora 254, 194–202.
First report of C4/CAM-cycling photosynthetic pathway in a succulent grass, Spinifex littoreus (Brum. F.) Merr., in coastal regions of Taiwan.Crossref | GoogleScholarGoogle Scholar |

Holthe PA, Patel A, Ting IP (1992) The occurrence of CAM in Peperomia. Selbyana 13, 77–87.

Holtum JAM, Winter K (1999) Degrees of crassulacean acid metabolism in tropical epiphytic and lithophytic ferns. Australian Journal of Plant Physiology 26, 749–757.

Holtum JAM, Smith JAC, Neuhaus HE (2005) Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism. Functional Plant Biology 32, 429–449.
Intracellular transport and pathways of carbon flow in plants with crassulacean acid metabolism.Crossref | GoogleScholarGoogle Scholar | 32689145PubMed |

Holtum JAM, Winter K, Weeks MA, Sexton TR (2007) Crassulacean acid metabolism in the ZZ plant, Zamioculcas zamiifolia (Araceae). American Journal of Botany 94, 1670–1676.
Crassulacean acid metabolism in the ZZ plant, Zamioculcas zamiifolia (Araceae).Crossref | GoogleScholarGoogle Scholar |

Holtum JAM, Hancock LP, Edwards EJ, Winter K (2018) Crassulacean acid metabolism in the Basellaceae (Caryophyllales). Plant Biology 20, 409–414.
Crassulacean acid metabolism in the Basellaceae (Caryophyllales).Crossref | GoogleScholarGoogle Scholar | 29369469PubMed |

Horn JW, Xi Z, Riina R, Peirson JA, Yang Y, Dorsey BL, Berry PE, Davis CC, Wurdack KJ (2014) Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68, 3485–3504.
Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway.Crossref | GoogleScholarGoogle Scholar | 25302554PubMed |

Huang W, Han S, Xing Z, Li W (2020) Responses of leaf anatomy and CO2 concentrating mechanisms of the aquatic plant Ottelia cordata to variable CO2. Frontiers in Plant Science 11, 1261
Responses of leaf anatomy and CO2 concentrating mechanisms of the aquatic plant Ottelia cordata to variable CO2.Crossref | GoogleScholarGoogle Scholar | 32922428PubMed |

Jones CS, Cardon ZG, Czaja AD (2003) A phylogenetic view of low-level CAM in Pelargonium (Geraniaceae). American Journal of Botany 90, 135–142.
A phylogenetic view of low-level CAM in Pelargonium (Geraniaceae).Crossref | GoogleScholarGoogle Scholar | 21659089PubMed |

Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Botanical Review 64, 121–175.
CAM photosynthesis in submerged aquatic plants.Crossref | GoogleScholarGoogle Scholar |

Kers LE (1985) Pilea peperomioides – a mystery solved. The Kew Magazine 2, 334–336.

Kluge M, Fischer K (1967) Über Zusammenhänge zwischen dem CO2-Austausch und der Abgabe von Wasserdampf durch Bryophyllum daigremontianum Berg. Planta 77, 212–223.
Über Zusammenhänge zwischen dem CO2-Austausch und der Abgabe von Wasserdampf durch Bryophyllum daigremontianum Berg.Crossref | GoogleScholarGoogle Scholar | 24522539PubMed |

Kluge M, Ting IP (1978) ‘Crassulacean acid metabolism.’ (Springer: Berlin, Germany)

Kluge M, Knapp I, Kramer D, Schwerdtner I, Ritter H (1979) Crassulacean acid metabolism (CAM) in leaves of Aloe arborescens Mill. Planta 145, 357–363.
Crassulacean acid metabolism (CAM) in leaves of Aloe arborescens Mill.Crossref | GoogleScholarGoogle Scholar | 24317763PubMed |

Koch K, Kennedy RA (1980) Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L. Plant Physiology 65, 193–197.
Characteristics of crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L.Crossref | GoogleScholarGoogle Scholar | 16661159PubMed |

Lancaster R (1985) Pilea peperomioides in China. The Kew Magazine 2, 334

Lüttge U (2006) Photosynthetic flexibility and ecophysiological plasticity: Questions and lessons from Clusia, the only CAM tree, in the neotropics. New Phytologist 171, 7–25.
Photosynthetic flexibility and ecophysiological plasticity: Questions and lessons from Clusia, the only CAM tree, in the neotropics.Crossref | GoogleScholarGoogle Scholar | 16771979PubMed |

Martin CE, Gravatt DA, Loeschen VS (1994) Crassulacean acid metabolism in three species of Commelinaceae. Annals of Botany 74, 457–463.
Crassulacean acid metabolism in three species of Commelinaceae.Crossref | GoogleScholarGoogle Scholar |

Martin SL, Davis R, Protti P, Lin T-C, Lin S-H, Martin CE (2005) The occurrence of crassulacean acid metabolism in epiphytic ferns, with an emphasis on the Vittariaceae. International Journal of Plant Sciences 166, 623–630.
The occurrence of crassulacean acid metabolism in epiphytic ferns, with an emphasis on the Vittariaceae.Crossref | GoogleScholarGoogle Scholar |

Medina E (1974) Dark CO2 fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28, 677–686.

Monro AK (2006) The revision of species-rich genera: a phylogenetic framework for the strategic revision of Pilea (Urticaceae) based on cpDNA, nrDNA, and morphology. American Journal of Botany 93, 426–441.
The revision of species-rich genera: a phylogenetic framework for the strategic revision of Pilea (Urticaceae) based on cpDNA, nrDNA, and morphology.Crossref | GoogleScholarGoogle Scholar | 21646202PubMed |

Mooney HA, Troughton JH, Berry JS (1977) Carbon isotope ratio measurements of succulent plants in southern Africa. Oecologia 30, 295–305.
Carbon isotope ratio measurements of succulent plants in southern Africa.Crossref | GoogleScholarGoogle Scholar | 28309179PubMed |

Neales TF (1973a) The effect of night-temperature on CO2 assimilation, transpiration, and water use efficiency in Agave americana L. Australian Journal of Biological Sciences 26, 705–714.
The effect of night-temperature on CO2 assimilation, transpiration, and water use efficiency in Agave americana L.Crossref | GoogleScholarGoogle Scholar |

Neales TF (1973b) Effect of night temperature on the assimilation of carbon dioxide by mature pineapple plants, Ananas comosus (L.) Merr. Australian Journal of Biological Sciences 26, 539–546.
Effect of night temperature on the assimilation of carbon dioxide by mature pineapple plants, Ananas comosus (L.) Merr.Crossref | GoogleScholarGoogle Scholar |

Neales TF, Patterson AA, Hartney VJ (1968) Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes. Nature 219, 469–472.
Physiological adaptation to drought in the carbon assimilation and water loss of xerophytes.Crossref | GoogleScholarGoogle Scholar |

Nobel PS (1988) ‘Environmental biology of agaves and cacti.’ (Cambridge University Press: Cambridge, UK)

Nuernbergk EL (1961) Endogener Rhythmus und CO2-Stoffwechsel bei Pflanzen mit diurnalem Säurerhythmus. Planta 56, 28–70.
Endogener Rhythmus und CO2-Stoffwechsel bei Pflanzen mit diurnalem Säurerhythmus.Crossref | GoogleScholarGoogle Scholar |

Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annual Review of Plant Physiology 29, 379–414.
Crassulacean acid metabolism: a curiosity in context.Crossref | GoogleScholarGoogle Scholar |

Osmond CB, Ludlow MM, Davis R, Cowan IR, Powles SP, Winter K (1979) Stomatal responses to humidity in Opuntia inermis in relation to control of CO2 and H2O exchange patterns. Oecologia 41, 65–76.
Stomatal responses to humidity in Opuntia inermis in relation to control of CO2 and H2O exchange patterns.Crossref | GoogleScholarGoogle Scholar | 28310360PubMed |

Radcliffe-Smith A (1984) 5. Pilea peperomioides: Urticaceae. The Kew Magazine 1, 14–19.

Rao IM, Swamy PM, Das VSR (1979) Some characteristics of crassulacean acid metabolism in five nonsucculent scrub species under natural semiarid conditions. Zeitschrift für Pflanzenphysiologie 94, 201–210.
Some characteristics of crassulacean acid metabolism in five nonsucculent scrub species under natural semiarid conditions.Crossref | GoogleScholarGoogle Scholar |

Ruess BR, Eller BM (1985) The correlation between crassulacean acid metabolism and water uptake in Senecio medley-woodii. Planta 166, 57–66.
The correlation between crassulacean acid metabolism and water uptake in Senecio medley-woodii.Crossref | GoogleScholarGoogle Scholar | 24241312PubMed |

Schütte KH, Steyn R, van der Westhuizen M (1967) Crassulacean acid metabolism in South African succulents: a preliminary investigation into its occurrence in various families. Journal of South African Botany 33, 107–110.

Shameer S, Baghalian K, Cheung CTM, Ratcliffe RG, Sweetlove LJ (2018) Computational analysis of the productivity potential of CAM. Nature Plants 4, 165–171.
Computational analysis of the productivity potential of CAM.Crossref | GoogleScholarGoogle Scholar | 29483685PubMed |

Shao H, Gontero B, Maberly SC, Jiang HS, Cao Y, Li W, Huang WM (2017) Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light. Journal of Experimental Botany 68, 3985–3995.
Responses of Ottelia alismoides, an aquatic plant with three CCMs, to variable CO2 and light.Crossref | GoogleScholarGoogle Scholar | 28369629PubMed |

Silvera K, Santiago L, Winter K (2005) Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. Functional Plant Biology 32, 397–407.
Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes.Crossref | GoogleScholarGoogle Scholar | 32689142PubMed |

Sipes DL, Ting IP (1985) Crassulacean acid metabolism and crassulacean acid metabolism modifications in Peperomia camptotricha. Plant Physiology 77, 59–63.
Crassulacean acid metabolism and crassulacean acid metabolism modifications in Peperomia camptotricha.Crossref | GoogleScholarGoogle Scholar | 16664028PubMed |

Skillman JB, Winter K (1997) High photosynthetic capacity in a shade-tolerant crassulacean acid metabolism plant. Implications for sunfleck use, nonphotochemical energy dissipation, and susceptibility to photoinhibition. Plant Physiology 113, 441–450.
High photosynthetic capacity in a shade-tolerant crassulacean acid metabolism plant. Implications for sunfleck use, nonphotochemical energy dissipation, and susceptibility to photoinhibition.Crossref | GoogleScholarGoogle Scholar | 12223618PubMed |

Skillman JB, Garcia M, Winter K (1999) Whole-plant consequences of crassulacean acid metabolism for a tropical forest understory plant. Ecology 80, 1584–1593.
Whole-plant consequences of crassulacean acid metabolism for a tropical forest understory plant.Crossref | GoogleScholarGoogle Scholar |

Smith BN, Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiology 47, 380–384.
Two categories of 13C/12C ratios for higher plants.Crossref | GoogleScholarGoogle Scholar | 16657626PubMed |

Smith JAC, Lüttge U (1985) Day–night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana. Planta 163, 272–282.
Day–night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism in Kalanchoë daigremontiana.Crossref | GoogleScholarGoogle Scholar |

Smith JAC, Winter K (1996) Taxonomic distribution of crassulacean acid metabolism. In ‘Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution’. (Eds K Winter, JAC Smith) pp. 427–436. (Springer: Berlin, Germany)

Stevens PF (2001) Angiosperm phylogeny website. Version 14, July 2017. http://www.mobot.org/MOBOT/research/APweb/ [Verified 4 November 2020]

Tinoco Ojanguren C, Vásquez-Yánes C (1983) Especies CAM en la selva húmeda tropical de los Tuxtlas, Veracruz. Boletín de la Sociedad Botánica de México 45, 150–153.

Tsen EWJ, Holtum JAM (2012) Crassulacean acid metabolism (CAM) in an epiphytic ant-plant, Myrmecodia beccarii Hook.f. (Rubiaceae). Photosynthesis Research 113, 311–320.
Crassulacean acid metabolism (CAM) in an epiphytic ant-plant, Myrmecodia beccarii Hook.f. (Rubiaceae).Crossref | GoogleScholarGoogle Scholar |

Virzo de Santo A, Alfani A, Greco L, Fioretto A (1980) Environmental influences on CAM activity of Cissus quadrangularis. Journal of Experimental Botany 31, 75–82.
Environmental influences on CAM activity of Cissus quadrangularis.Crossref | GoogleScholarGoogle Scholar |

von Willert DJ, Armbrüster N, Drees T, Zaborowski M (2005) Welwitschia mirabilis: CAM or not CAM – what is the answer? Functional Plant Biology 32, 389–395.
Welwitschia mirabilis: CAM or not CAM – what is the answer?Crossref | GoogleScholarGoogle Scholar | 32689141PubMed |

Vovides AP, Etherington JR, Dresser PQ, Groenhof A, Iglesias C, Flores Ramirez J (2002) CAM-cycling in the cycad Dioon edule Lindl. in its natural tropical deciduous forest habitat in central Veracruz, Mexico. Botanical Journal of the Linnean Society 138, 155–162.
CAM-cycling in the cycad Dioon edule Lindl. in its natural tropical deciduous forest habitat in central Veracruz, Mexico.Crossref | GoogleScholarGoogle Scholar |

Walker CC, Levers M (1993) Pilea peperomioides – a Chinese member of the stinging nettle family. British Cactus & Succulent Journal 11, 98–99.

Winter K (1979) δ13C values of some succulent plants from Madagascar. Oecologia 40, 103–112.
δ13C values of some succulent plants from Madagascar.Crossref | GoogleScholarGoogle Scholar | 28309607PubMed |

Winter K (2019) Ecophysiology of constitutive and facultative CAM photosynthesis. Journal of Experimental Botany 70, 6495–6508.
Ecophysiology of constitutive and facultative CAM photosynthesis.Crossref | GoogleScholarGoogle Scholar | 30810162PubMed |

Winter K, Holtum JAM (2007) Environment or development? Lifetime net CO2 exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Physiology 143, 98–107.
Environment or development? Lifetime net CO2 exchange and control of the expression of crassulacean acid metabolism in Mesembryanthemum crystallinum.Crossref | GoogleScholarGoogle Scholar | 17056756PubMed |

Winter K, Holtum JAM (2011) Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. Functional Plant Biology 38, 576–582.
Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients.Crossref | GoogleScholarGoogle Scholar | 32480910PubMed |

Winter K, Holtum JAM (2014) Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. Journal of Experimental Botany 65, 3425–3441.
Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.Crossref | GoogleScholarGoogle Scholar | 24642847PubMed |

Winter K, Holtum JAM (2017) Facultative crassulacean acid metabolism (CAM) in four small C3 and C4 leaf-succulents. Australian Journal of Botany 65, 103–108.
Facultative crassulacean acid metabolism (CAM) in four small C3 and C4 leaf-succulents.Crossref | GoogleScholarGoogle Scholar |

Winter K, Lüttge U (1976) Balance between C3 and CAM pathway of photosynthesis. In ‘Water and plant life – problems and modern approaches’. (Eds OL Lange, L Kappen, ED Schulze) pp. 323–334. (Springer: Berlin, Germany)

Winter K, Smith JAC (1996a) An introduction to crassulacean acid metabolism. Biochemical principles and ecological diversity. In ‘Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution’. (Eds K Winter, JAC Smith) pp. 1–13. (Springer: Berlin, Germany)

Winter K, Smith JAC (1996b) Crassulacean acid metabolism. Current status and perspectives. In ‘Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution’. (Eds K Winter, JAC Smith) pp. 389–426. (Springer: Berlin, Germany)

Winter K, von Willert DJ (1972) NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum. Zeitschrift für Pflanzenphysiologie 67, 166–170.
NaCl-induzierter Crassulaceensäurestoffwechsel bei Mesembryanthemum crystallinum.Crossref | GoogleScholarGoogle Scholar |

Winter K, Troughton JH, Evenari M, Läuchli A, Lüttge U (1976) Mineral ion composition and occurrence of CAM like diurnal malate fluctuations in plants of coastal and desert habitats of Israel and the Sinai. Oecologia 25, 125–143.
Mineral ion composition and occurrence of CAM like diurnal malate fluctuations in plants of coastal and desert habitats of Israel and the Sinai.Crossref | GoogleScholarGoogle Scholar | 28308995PubMed |

Winter K, Aranda J, Holtum JAM (2005) Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism. Functional Plant Biology 32, 381–388.
Carbon isotope composition and water-use efficiency in plants with crassulacean acid metabolism.Crossref | GoogleScholarGoogle Scholar | 32689140PubMed |

Winter K, Holtum JAM, Smith JAC (2015) Crassulacean acid metabolism: a continuous or discrete trait? New Phytologist 208, 73–78.
Crassulacean acid metabolism: a continuous or discrete trait?Crossref | GoogleScholarGoogle Scholar | 25975197PubMed |

Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57, 129–141.
Crassulacean acid metabolism in Australian vascular epiphytes and some related species.Crossref | GoogleScholarGoogle Scholar | 28310165PubMed |

Winter K, Garcia M, Virgo A, Holtum JAM (2019a) Operating at the very low end of the crassulacean acid metabolism spectrum: Sesuvium portulacastrum (Aizoaceae). Journal of Experimental Botany 70, 6561–6570.
Operating at the very low end of the crassulacean acid metabolism spectrum: Sesuvium portulacastrum (Aizoaceae).Crossref | GoogleScholarGoogle Scholar | 30535159PubMed |

Winter K, Sage RF, Edwards EJ, Virgo A, Holtum JAM (2019b) Facultative crassulacean acid metabolism in a C3 – C4 intermediate. Journal of Experimental Botany 70, 6571–6579.
Facultative crassulacean acid metabolism in a C3 – C4 intermediate.Crossref | GoogleScholarGoogle Scholar | 30820551PubMed |

Winter K, Garcia M, Virgo A, Ceballos J, Holtum JAM (2020a) Does the C4 plant Trianthema portulacastrum L. (Aizoaceae) exhibit weakly expressed crassulacean acid metabolism (CAM)? Functional Plant Biology

Winter K, Virgo A, Garcia M, Aranda J, Holtum JAM (2020b) Constitutive and facultative crassulacean acid metabolism (CAM) in Cuban oregano, Coleus amboinicus (Lamiaceae). Functional Plant Biology
Constitutive and facultative crassulacean acid metabolism (CAM) in Cuban oregano, Coleus amboinicus (Lamiaceae).Crossref | GoogleScholarGoogle Scholar | 33213694PubMed |

Wong SC, Hew CS (1976) Diffusive resistance, titratable acidity, and CO2 fixation in two tropical epiphytic ferns. American Fern Journal 66, 121–124.
Diffusive resistance, titratable acidity, and CO2 fixation in two tropical epiphytic ferns.Crossref | GoogleScholarGoogle Scholar |

Yuan M, Xu F, Wang S-D, Zhang D-W, Zhang Z-W, Cao Y, Xu X-C, Luo M-H, Yuan S (2012) A single leaf of Camellia oleifera has two types of carbon assimilation pathway, C3 and crassulacean acid metabolism. Tree Physiology 32, 188–199.
A single leaf of Camellia oleifera has two types of carbon assimilation pathway, C3 and crassulacean acid metabolism.Crossref | GoogleScholarGoogle Scholar | 22337600PubMed |

Zhang Y, Yin L, Jiang H-S, Wi L, Gontero B, Maberly SC (2014) Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae). Photosynthesis Research 121, 285–297.
Biochemical and biophysical CO2 concentrating mechanisms in two species of freshwater macrophyte within the genus Ottelia (Hydrocharitaceae).Crossref | GoogleScholarGoogle Scholar | 24203583PubMed |

Zou S, Zeng Y, Duan W, Li R (2017) Discussion about plant landscape configuration in the construction of urban rainwater gardens. Advances in Intelligent Systems Research 150, 77–83.