Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Multi-faceted nature of the tRNA isopentenyltransferase

Siarhei Dabravolski https://orcid.org/0000-0002-0547-6310
+ Author Affiliations
- Author Affiliations

Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic. Email: sergedobrowolski@gmail.com

Functional Plant Biology 47(6) 475-485 https://doi.org/10.1071/FP19255
Submitted: 30 August 2019  Accepted: 26 December 2019   Published: 29 April 2020

Abstract

Transfer RNA isopentenylation an adenine 37 position (A37) is a universal modification known in prokaryotes and eukaryotes. A set of highly homologous enzymes catalyse a series of reactions, leading to tRNA modifications, aimed to increase adaptation to environmental condition through the control of translation efficiency and reading frame maintenance. Transfer RNA-isopentenylation-related (TI-related) functions are well studied in bacteria, mitochondria of yeast and human, but completely unexplored in plants. Transfer RNA-isopentenylation-unrelated (TI-unrelated) functions participate in adaptation to environmental stresses via the regulation of sterol metabolism, gene silencing/suppression and amyloid fibrils formation. TI-unrelated functions are mostly studied in yeast. Finally, the degradation of A37-modified tRNA releases a set of bioactive compounds known as cis-cytokinins. Although all organisms are able to produce cis-cytokinins, its physiological role is still a matter of debates. For several species of bacteria and fungi, cis-cytokinins are known to play a crucial role in pathogenesis. In mammalian and human models cis-cytokinins have tumour-suppressing and anti-inflammation effects. This review aims to summarise current knowledge of the TI-related and TI-unrelated functions and main bioactive by-products of isopentenylated tRNA degradation.

Additional keywords: adenine, cytokinin, isopentenylation, tRNA.


References

Anantharaman V, Koonin EV, Aravind L (2001) TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes. FEMS Microbiology Letters 197, 215–221.
TRAM, a predicted RNA-binding domain, common to tRNA uracil methylation and adenine thiolation enzymes.Crossref | GoogleScholarGoogle Scholar | 11313137PubMed |

Anton BP, Russell SP, Vertrees J, Kasif S, Raleigh EA, Limbach PA, Roberts RJ (2010) Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis. Nucleic Acids Research 38, 6195–6205.
Functional characterization of the YmcB and YqeV tRNA methylthiotransferases of Bacillus subtilis.Crossref | GoogleScholarGoogle Scholar | 20472640PubMed |

Armstrong DJ, Burrows WJ, Skoog F, Roy KL, Söll D (1969) Cytokinins: distribution in transfer RNA species of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 63, 834–841.
Cytokinins: distribution in transfer RNA species of Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 4899879PubMed |

Aubee JI, Olu M, Thompson KM (2016) The i6 A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during rpoS and iraP translation. RNA 22, 729–742.
The i6 A37 tRNA modification is essential for proper decoding of UUX-Leucine codons during rpoS and iraP translation.Crossref | GoogleScholarGoogle Scholar | 26979278PubMed |

Bifulco M, Malfitano AM, Proto MC, Santoro A, Caruso MG, Laezza C (2008) Biological and pharmacological roles of N6-isopentenyladenosine: an emerging anticancer drug. Anti-cancer Agents in Medicinal Chemistry 8, 200–204.
Biological and pharmacological roles of N6-isopentenyladenosine: an emerging anticancer drug.Crossref | GoogleScholarGoogle Scholar | 18288922PubMed |

Björk GR (1986) Transfer RNA modification in different organisms. Chemica Scripta 26, 91–95.

Blad CC, von Frijtag Drabbe Künzel JK, de Vries H, Mulder-Krieger T, Bar-Yehuda S, Fishman P, IJzerman AP (2011) Putative role of the adenosine A3 receptor in the antiproliferative action of N6-(2-isopentenyl)adenosine. Purinergic Signalling 7, 453–462.
Putative role of the adenosine A3 receptor in the antiproliferative action of N6-(2-isopentenyl)adenosine.Crossref | GoogleScholarGoogle Scholar | 21720785PubMed |

Blum PH (1988) Reduced leu operon expression in a miaA mutant of Salmonella typhimurium. Journal of Bacteriology 170, 5125–5133.
Reduced leu operon expression in a miaA mutant of Salmonella typhimurium.Crossref | GoogleScholarGoogle Scholar | 3141379PubMed |

Boccaletto P, Machnicka MA, Purta E, Piątkowski P, Bagiński B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Research 46, D303–D307.
MODOMICS: a database of RNA modification pathways. 2017 update.Crossref | GoogleScholarGoogle Scholar | 29106616PubMed |

Buck M, Ames BN (1984) A modified nucleotide in tRNA as a possible regulator of aerobiosis: synthesis of cis-2-methyl-thioribosylzeatin in the tRNA of Salmonella. Cell 36, 523–531.
A modified nucleotide in tRNA as a possible regulator of aerobiosis: synthesis of cis-2-methyl-thioribosylzeatin in the tRNA of Salmonella.Crossref | GoogleScholarGoogle Scholar | 6362893PubMed |

Casati S, Ottria R, Baldoli E, Lopez E, Maier JA, Ciuffreda P (2011) Effects of cytokinins, cytokinin ribosides and their analogs on the viability of normal and neoplastic human cells. Anticancer Research 31, 3401–3406.

Castiglioni S, Casati S, Ottria R, Ciuffreda P, Maier JAM (2013) N6-isopentenyladenosine and its analogue N6-benzyladenosine induce cell cycle arrest and apoptosis in bladder carcinoma T24 cells. Anti-cancer Agents in Medicinal Chemistry 13, 672–678.
N6-isopentenyladenosine and its analogue N6-benzyladenosine induce cell cycle arrest and apoptosis in bladder carcinoma T24 cells.Crossref | GoogleScholarGoogle Scholar | 23094912PubMed |

Chanclud E, Kisiala A, Emery NRJ, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathogens 12, e1005457
Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence.Crossref | GoogleScholarGoogle Scholar | 26900703PubMed |

Chen P, Jäger G, Zheng B (2010) Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana. BMC Plant Biology 10, 201
Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 20836892PubMed |

Cherayil JD, Lipsett MN (1977) Zeatin ribonucleosides in the transfer ribonucleic acid of Rhizobium leguminosarum, Agrobacterium tumefaciens, Corynebacterium fascians, and Erwinia amylovora. Journal of Bacteriology 131, 741–744.
Zeatin ribonucleosides in the transfer ribonucleic acid of Rhizobium leguminosarum, Agrobacterium tumefaciens, Corynebacterium fascians, and Erwinia amylovora.Crossref | GoogleScholarGoogle Scholar | 893341PubMed |

Colombo F, Falvella FS, De Cecco L, Tortoreto M, Pratesi G, Ciuffreda P, Ottria R, Santaniello E, Cicatiello L, Weisz A, Dragani TA (2009) Pharmacogenomics and analogues of the antitumour agent N6-isopentenyladenosine. International Journal of Cancer 124, 2179–2185.
Pharmacogenomics and analogues of the antitumour agent N6-isopentenyladenosine.Crossref | GoogleScholarGoogle Scholar | 19123479PubMed |

Corder AL, Subedi BP, Zhang S, Dark AM, Foss FW, Pierce BS (2013) Peroxide-shunt substrate-specificity for the Salmonella typhimurium O2-dependent tRNA modifying monooxygenase (MiaE). Biochemistry 52, 6182–6196.
Peroxide-shunt substrate-specificity for the Salmonella typhimurium O2-dependent tRNA modifying monooxygenase (MiaE).Crossref | GoogleScholarGoogle Scholar | 23906247PubMed |

Dao V, Guenther R, Malkiewicz A, Nawrot B, Sochacka E, Kraszewski A, Jankowska J, Everett K, Agris PF (1994) Ribosome binding of DNA analogs of tRNA requires base modifications and supports the ‘extended anticodon’. Proceedings of the National Academy of Sciences of the United States of America 91, 2125–2129.
Ribosome binding of DNA analogs of tRNA requires base modifications and supports the ‘extended anticodon’.Crossref | GoogleScholarGoogle Scholar | 7510886PubMed |

Dassano A, Mancuso M, Giardullo P, de Ceccod L, Ciuffreda P, Santaniello E, Saran A, Dragania TA, Colombo F (2014) N6-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response. Redox Biology 2, 580–589.
N6-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response.Crossref | GoogleScholarGoogle Scholar | 24688894PubMed |

Deutsch C, El Yacoubi B, de Crécy-Lagard V, Iwata-Reuyl D (2012) Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside. Journal of Biological Chemistry 287, 13666–13673.
Biosynthesis of threonylcarbamoyl adenosine (t6A), a universal tRNA nucleoside.Crossref | GoogleScholarGoogle Scholar | 22378793PubMed |

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart (2019) The Pfam protein families database in 2019. Nucleic Acids Research 47, D427–D432.
The Pfam protein families database in 2019.Crossref | GoogleScholarGoogle Scholar | 30357350PubMed |

Esberg B, Leung HC, Tsui HC, Björk GR, Winkler ME (1999) Identification of the miaB gene, involved in methylthiolation of isopentenylated A37 derivatives in the tRNA of Salmonella typhimurium and Escherichia coli. Journal of Bacteriology 181, 7256–7265.
Identification of the miaB gene, involved in methylthiolation of isopentenylated A37 derivatives in the tRNA of Salmonella typhimurium and Escherichia coli.Crossref | GoogleScholarGoogle Scholar | 10572129PubMed |

Fakruddin Md, Wei FY, Emura S, Matsuda S, Yasukawa T, Kang D, Tomizawa K (2017) Cdk5rap1-mediated 2-methylthio-N6-isopentenyladenosine modification is absent from nuclear-derived RNA species. Nucleic Acids Research 45, 11954–11961.
Cdk5rap1-mediated 2-methylthio-N6-isopentenyladenosine modification is absent from nuclear-derived RNA species.Crossref | GoogleScholarGoogle Scholar | 28981754PubMed |

Fradejas N, Carlson BA, Rijntjes E, Becker NP, Tobe R, Schweizer U (2013) Mammalian Trit1 is a tRNA [Ser]Sec-isopentenyl transferase required for full selenoprotein expression. The Biochemical Journal 450, 427–432.
Mammalian Trit1 is a tRNA [Ser]Sec-isopentenyl transferase required for full selenoprotein expression.Crossref | GoogleScholarGoogle Scholar | 23289710PubMed |

Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V (2011) Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. Journal of Experimental Botany 62, 2827–2840.
Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants.Crossref | GoogleScholarGoogle Scholar | 21282330PubMed |

Gillman EC, Slusher LB, Martin NC, Hopper AK (1991) MOD5 translation initiation sites determine N6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA. Molecular and Cellular Biology 11, 2382–2390.
MOD5 translation initiation sites determine N6-isopentenyladenosine modification of mitochondrial and cytoplasmic tRNA.Crossref | GoogleScholarGoogle Scholar | 1850093PubMed |

Golovko A, Hjälm G, Sitbon F, Nicander B (2000) Cloning of a human tRNA isopentenyl transferase. Gene 258, 85–93.
Cloning of a human tRNA isopentenyl transferase.Crossref | GoogleScholarGoogle Scholar | 11111046PubMed |

Golovko A, Sitbon F, Tillberg E, Nicander B (2002) Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana. Plant Molecular Biology 49, 161–169.
Identification of a tRNA isopentenyltransferase gene from Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 11999372PubMed |

Golovko A, Sitbon F, Tillberg E, Nicander B (2007) Expression of a human tRNA isopentenyltransferase in tobacco reveals a developmental role for tRNA isopentenyladenosine. Functional Plant Biology 34, 654
Expression of a human tRNA isopentenyltransferase in tobacco reveals a developmental role for tRNA isopentenyladenosine.Crossref | GoogleScholarGoogle Scholar |

Gray J, Wang J, Gelvin SB (1992) Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression. Journal of Bacteriology 174, 1086–1098.
Mutation of the miaA gene of Agrobacterium tumefaciens results in reduced vir gene expression.Crossref | GoogleScholarGoogle Scholar | 1735704PubMed |

Grosjean H, Houssier C, Romby P, Marquet R (1998) Modulatory role of modified nucleotides in RNA loop-loop interaction. In ‘Modification and editing of RNA’. (Eds. H Grosjean, R Benne) pp. 113–133. (ASM Press: Washington DC)

Haussuehl K, Huesgen PF, Meier M, Dessi P, Glaser E, Adamski J, Adamska I (2009) Eukaryotic GCP1 is a conserved mitochondrial protein required for progression of embryo development beyond the globular stage in Arabidopsis thaliana. The Biochemical Journal 423, 333–341.
Eukaryotic GCP1 is a conserved mitochondrial protein required for progression of embryo development beyond the globular stage in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 19694617PubMed |

Hernández HL, Pierrel F, Elleingand E, García-Serres R, Huynh BH, Johnson MK, Fontecave M, Atta M (2007) MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters. Biochemistry 46, 5140–5147.
MiaB, a bifunctional radical-S-adenosylmethionine enzyme involved in the thiolation and methylation of tRNA, contains two essential [4Fe-4S] clusters.Crossref | GoogleScholarGoogle Scholar | 17407324PubMed |

Hudock MP, Zhang Y, Guo RT, Cao R, No JH, Liang PH, Ko TP, Chang TH, Chang S, Song Y, Axelson J, Kumar A, Wang AHJ, Oldfield E (2008) Inhibition of geranylgeranyl diphosphate synthase by bisphosphonates: a crystallographic and computational investigation. Journal of Medicinal Chemistry 51, 5594–5607.
Inhibition of geranylgeranyl diphosphate synthase by bisphosphonates: a crystallographic and computational investigation.Crossref | GoogleScholarGoogle Scholar | 18800762PubMed |

Hull MW, Erickson J, Johnston M, Engelke DR (1994) tRNA genes as transcriptional repressor elements. Molecular and Cellular Biology 14, 1266–1277.
tRNA genes as transcriptional repressor elements.Crossref | GoogleScholarGoogle Scholar | 8289806PubMed |

Janzer JJ, Raney JP, McLennan BD (1982) The transfer RNA of certain Enterobacteriacae contain 2-methylthiozeatin riboside (ms2io6A) an isopentenyl adenosine derivative. Nucleic Acids Research 10, 5663–5672.
The transfer RNA of certain Enterobacteriacae contain 2-methylthiozeatin riboside (ms2io6A) an isopentenyl adenosine derivative.Crossref | GoogleScholarGoogle Scholar | 6815620PubMed |

Jenner LB, Demeshkina N, Yusupova G, Yusupov M (2010) Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nature Structural & Molecular Biology 17, 555–560.
Structural aspects of messenger RNA reading frame maintenance by the ribosome.Crossref | GoogleScholarGoogle Scholar |

Kaminska J, Grabinska K, Kwapisz M, Sikora J, Smagowicz WJ, Palamarczyk G, Żołądek T, Boguta M (2002) The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis. FEMS Yeast Research 2, 31–37.
The isoprenoid biosynthetic pathway in Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis.Crossref | GoogleScholarGoogle Scholar | 12702319PubMed |

Karcher D, Bock R (2009) Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme. RNA 15, 1251–1257.
Identification of the chloroplast adenosine-to-inosine tRNA editing enzyme.Crossref | GoogleScholarGoogle Scholar | 19460869PubMed |

Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004) Distinct isoprenoid origins of cis - and trans-zeatin biosyntheses in Arabidopsis. Journal of Biological Chemistry 279, 14049–14054.
Distinct isoprenoid origins of cis - and trans-zeatin biosyntheses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 14726522PubMed |

Kieber JJ, Schaller GE (2014) Cytokinins. The Arabidopsis Book / American Society of Plant Biologists 12, e0168
Cytokinins.Crossref | GoogleScholarGoogle Scholar |

Kim J, Malashkevich V, Roday S, Lisbin M, Schramm VL, Almo SC (2006) Structural and kinetic characterization of Escherichia coli TadA, the Wobble-Specific tRNA Deaminase. Biochemistry 45, 6407–6416.
Structural and kinetic characterization of Escherichia coli TadA, the Wobble-Specific tRNA Deaminase.Crossref | GoogleScholarGoogle Scholar | 16700551PubMed |

Kind S, Hinsch J, Vrabka J, Hradilová M, Majeská-Čudejková M, Tudzynski P, Galuszka P (2018) Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence. Current Genetics.
Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence.Crossref | GoogleScholarGoogle Scholar | 29850931PubMed |

Köllmer I, Novák O, Strnad M, Schmülling T, Werner T (2014) Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation. The Plant Journal 78, 359–371.
Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation.Crossref | GoogleScholarGoogle Scholar | 24528491PubMed |

Kushwah S, Jones AM, Laxmi A (2011) Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth. Plant Physiology 156, 1851–1866.
Cytokinin interplay with ethylene, auxin, and glucose signaling controls Arabidopsis seedling root directional growth.Crossref | GoogleScholarGoogle Scholar | 21666052PubMed |

Laezza C, Migliaro A, Cerbone R, Tedesco I, Santillo M, Garbi C, Bifulco M (1997) N6-isopentenyladenosine affects cAMP-dependent microfilament organization in FRTL-5 thyroid cells. Experimental Cell Research 234, 178–182.
N6-isopentenyladenosine affects cAMP-dependent microfilament organization in FRTL-5 thyroid cells.Crossref | GoogleScholarGoogle Scholar | 9223384PubMed |

Laezza C, Notarnicola M, Caruso MG, Messa C, Macchia M, Bertini S, Minutolo F, Portella G, Fiorentino L, Stingo S, Bifulco M (2006) N6-isopentenyladenosine arrests tumor cell proliferation by inhibiting farnesyl diphosphate synthase and protein prenylation. The FASEB Journal 20, 412–418.
N6-isopentenyladenosine arrests tumor cell proliferation by inhibiting farnesyl diphosphate synthase and protein prenylation.Crossref | GoogleScholarGoogle Scholar | 16507758PubMed |

Laezza C, Caruso MG, Gentile T, Notarnicola M, Malfitano AM, Matola TD, Messa C, Gazzerro P, Bifulco M (2009) N6-isopentenyladenosine inhibits cell proliferation and induces apoptosis in a human colon cancer cell line DLD1. International Journal of Cancer 124, 1322–1329.
N6-isopentenyladenosine inhibits cell proliferation and induces apoptosis in a human colon cancer cell line DLD1.Crossref | GoogleScholarGoogle Scholar | 19058178PubMed |

Lamichhane TN, Blewett NH, Maraia RJ (2011) Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases. RNA 17, 1846–1857.
Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases.Crossref | GoogleScholarGoogle Scholar | 21873461PubMed |

Lamichhane TN, Mattijssen S, Maraia RJ (2013) Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor. Molecular and Cellular Biology 33, 4900–4908.
Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor.Crossref | GoogleScholarGoogle Scholar | 24126054PubMed |

Lamichhane TN, Arimbasseri AG, Rijal K, Iben JR, Wei FY, Tomizawa K, Maraia RJ (2016) Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA. RNA 22, 583–596.
Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA.Crossref | GoogleScholarGoogle Scholar | 26857223PubMed |

Laten H, Gorman J, Bock RM (1978) Isopentenyladenosine deficient tRNA from an antisuppressor mutant of Saccharomyces cerevisiae. Nucleic Acids Research 5, 4329–4342.
Isopentenyladenosine deficient tRNA from an antisuppressor mutant of Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 364426PubMed |

Leipuviene R, Qian Q, Bjork GR (2004) Formation of thiolated nucleosides present in tRNA from Salmonella enterica serovar typhimurium occurs in two principally distinct pathways. Journal of Bacteriology 186, 758–766.
Formation of thiolated nucleosides present in tRNA from Salmonella enterica serovar typhimurium occurs in two principally distinct pathways.Crossref | GoogleScholarGoogle Scholar | 14729702PubMed |

Lin CA, Ellis SR, True HL (2010) The Sua5 protein is essential for normal translational regulation in yeast. Molecular and Cellular Biology 30, 354–363.
The Sua5 protein is essential for normal translational regulation in yeast.Crossref | GoogleScholarGoogle Scholar | 19884342PubMed |

Lindner A-C, Lang D, Seifert M, Podlešáková K, Novák O, Strnad M, Reski R, von Schwartzenberg K (2014) Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis. Journal of Experimental Botany 65, 2533–2543.
Isopentenyltransferase-1 (IPT1) knockout in Physcomitrella together with phylogenetic analyses of IPTs provide insights into evolution of plant cytokinin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 24692654PubMed |

Maas S, Gerber AP, Rich A (1999) Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proceedings of the National Academy of Sciences of the United States of America 96, 8895–8900.
Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes.Crossref | GoogleScholarGoogle Scholar | 10430867PubMed |

Manzano D, Busquets A, Closa M, Hoyerová K, Schaller H, Kamínek M, Arró M, Ferrer A (2006) Overexpression of farnesyl diphosphate synthase in Arabidopsis mitochondria triggers light-dependent lesion formation and alters cytokinin homeostasis. Plant Molecular Biology 61, 195–213.
Overexpression of farnesyl diphosphate synthase in Arabidopsis mitochondria triggers light-dependent lesion formation and alters cytokinin homeostasis.Crossref | GoogleScholarGoogle Scholar | 16786301PubMed |

Mathevon C, Pierrel F, Oddou J-L, Garcia-Serres R, Blondin G, Latour JM, Ménage S, Gambarelli S, Fontecave M, Atta M (2007) tRNA-modifying MiaE protein from Salmonella typhimurium is a nonheme diiron monooxygenase. Proceedings of the National Academy of Sciences of the United States of America 104, 13295–13300.
tRNA-modifying MiaE protein from Salmonella typhimurium is a nonheme diiron monooxygenase.Crossref | GoogleScholarGoogle Scholar | 17679698PubMed |

Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C, Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND, Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA, Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong SY, Finn RD (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research 47, D351–D360.
InterPro in 2019: improving coverage, classification and access to protein sequence annotations.Crossref | GoogleScholarGoogle Scholar | 30398656PubMed |

Miyawaki K, Tarkowski P, Matsumoto-Kitano M, Kato T, Sato S, Tarkowska D, Tabata S, Sandberg G, Kakimoto T (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 103, 16598–16603.
Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 17062755PubMed |

Mohler K, Ibba M (2017) Translational fidelity and mistranslation in the cellular response to stress. Nature Microbiology 2, 17117
Translational fidelity and mistranslation in the cellular response to stress.Crossref | GoogleScholarGoogle Scholar | 28836574PubMed |

Moore JA, Poulter CD (1997) Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: a binding mechanism for recombinant enzyme. Biochemistry 36, 604–614.
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: a binding mechanism for recombinant enzyme.Crossref | GoogleScholarGoogle Scholar | 9012675PubMed |

Morrison EN, Knowles S, Hayward A, Thorn RG, Saville BJ, Emery RJN (2015) Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis. Mycologia 107, 245–257.
Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis.Crossref | GoogleScholarGoogle Scholar | 25572099PubMed |

Morrison EN, Emery RJN, Saville BJ (2017) Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize. Plant Pathology 66, 726–742.
Fungal derived cytokinins are necessary for normal Ustilago maydis infection of maize.Crossref | GoogleScholarGoogle Scholar |

Nishii K, Wright F, Chen Y-Y, Möller M (2018) Tangled history of a multigene family: the evolution of ISOPENTENYLTRANSFERASE genes. PLoS One 13, e0201198
Tangled history of a multigene family: the evolution of ISOPENTENYLTRANSFERASE genes.Crossref | GoogleScholarGoogle Scholar | 30070990PubMed |

Oberto J, Breuil N, Hecker A, Farina F, Brochier-Armanet C, Culetto E, Forterre P (2009) Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance. Nucleic Acids Research 37, 5343–5352.
Qri7/OSGEPL, the mitochondrial version of the universal Kae1/YgjD protein, is essential for mitochondrial genome maintenance.Crossref | GoogleScholarGoogle Scholar | 19578062PubMed |

Paris Z, Fleming IMC, Alfonzo JD (2012) Determinants of tRNA editing and modification: avoiding conundrums, affecting function. Seminars in Cell & Developmental Biology 23, 269–274.
Determinants of tRNA editing and modification: avoiding conundrums, affecting function.Crossref | GoogleScholarGoogle Scholar |

Pratt-Hyatt M, Pai DA, Haeusler RA, Wozniak GG, Good PD, Miller EL, McLeod IX, Yates GR, Hopper AK, Engelke DR (2013) Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing. Proceedings of the National Academy of Sciences of the United States of America 110, E3081–E3089.
Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing.Crossref | GoogleScholarGoogle Scholar | 23898186PubMed |

Qian Q, Björk GR (1997) Structural alterations far from the anticodon of the tRNAProGGG of Salmonella typhimurium induce +1 frameshifting at the peptidyl-site. Journal of Molecular Biology 273, 978–992.
Structural alterations far from the anticodon of the tRNAProGGG of Salmonella typhimurium induce +1 frameshifting at the peptidyl-site.Crossref | GoogleScholarGoogle Scholar | 9367785PubMed |

Rajabi M, Signorelli P, Gorincioi E, Ghidoni R, Santaniello E (2010) Antiproliferative activity of N6-isopentenyladenosine on MCF-7 breast cancer cells: cell cycle analysis and DNA-binding study. DNA and Cell Biology 29, 687–691.
Antiproliferative activity of N6-isopentenyladenosine on MCF-7 breast cancer cells: cell cycle analysis and DNA-binding study.Crossref | GoogleScholarGoogle Scholar | 20818975PubMed |

Rasulov B, Talts E, Kännaste A, Niinemets Ü (2015) Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen. Plant Physiology 168, 532–548.
Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.Crossref | GoogleScholarGoogle Scholar | 25926480PubMed |

Read DF, Waller TJ, Tse E, Southworth DR, Engelke DR, Smaldino PJ (2017) Aggregation of Mod5 is affected by tRNA binding with implications for tRNA gene-mediated silencing. FEBS Letters 591, 1601–1610.
Aggregation of Mod5 is affected by tRNA binding with implications for tRNA gene-mediated silencing.Crossref | GoogleScholarGoogle Scholar | 28303570PubMed |

Reiter V, Matschkal DMS, Wagner M, Globisch D, Kneuttinger AC, Müller M, Carell T (2012) The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA. Nucleic Acids Research 40, 6235–6240.
The CDK5 repressor CDK5RAP1 is a methylthiotransferase acting on nuclear and mitochondrial RNA.Crossref | GoogleScholarGoogle Scholar | 22422838PubMed |

Santoro A, Ciaglia E, Nicolin V, Pescatore A, Prota L, Capunzo M, Ursini MV, Nori SL, Bifulco M (2018) The isoprenoid end product N6-isopentenyladenosine reduces inflammatory response through the inhibition of the NFκB and STAT3 pathways in cystic fibrosis cells. Inflammation Research 67, 315–326.
The isoprenoid end product N6-isopentenyladenosine reduces inflammatory response through the inhibition of the NFκB and STAT3 pathways in cystic fibrosis cells.Crossref | GoogleScholarGoogle Scholar | 29230506PubMed |

Schäfer M, Brütting C, Meza-Canales ID, Großkinsky DK, Vankova R, Baldwin IT, Meldau S (2015) The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. Journal of Experimental Botany 66, 4873–4884.
The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions.Crossref | GoogleScholarGoogle Scholar | 25998904PubMed |

Schweizer U, Bohleber S, Fradejas-Villar N (2017) The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biology 14, 1197–1208.
The modified base isopentenyladenosine and its derivatives in tRNA.Crossref | GoogleScholarGoogle Scholar | 28277934PubMed |

Seegobin M, Kisiala A, Noble A, Kaplan D, Brunetti C, Emery RJN (2018) Canis familiaris tissues are characterized by different profiles of cytokinins typical of the tRNA degradation pathway. FASEB Journal 32, 6575–6581.
Canis familiaris tissues are characterized by different profiles of cytokinins typical of the tRNA degradation pathway.Crossref | GoogleScholarGoogle Scholar |

Shin M-K, Uhm Y-K, Lee J-H, Kim SK, Chung JH, Lee MH (2012) Association between CDK5RAP1 polymorphisms and susceptibility to vitiligo in the Korean population. European Journal of Dermatology 22, 495–499.
Association between CDK5RAP1 polymorphisms and susceptibility to vitiligo in the Korean population.Crossref | GoogleScholarGoogle Scholar | 22534366PubMed |

Skoog F, Armstrong DJ, Cherayil JD, Hampel AE, Bock RM (1966) Cytokinin activity: localization in transfer RNA preparations. Science 154, 1354–1356.
Cytokinin activity: localization in transfer RNA preparations.Crossref | GoogleScholarGoogle Scholar | 5332571PubMed |

Slocum HK, Hakala MT (1975) Mechanism of natural resistance to N6-(Δ2-isopentenyl)adenosine in cultured cells. Cancer Research 35, 423–428.

Smaldino PJ, Read DF, Pratt-Hyatt M, Hopperb AK, Engelkea DR (2015) The cytoplasmic and nuclear populations of the eukaryote tRNA-isopentenyl transferase have distinct functions with implications in human cancer. Gene 556, 13–18.
The cytoplasmic and nuclear populations of the eukaryote tRNA-isopentenyl transferase have distinct functions with implications in human cancer.Crossref | GoogleScholarGoogle Scholar | 25261850PubMed |

Soderberg T, Poulter CD (2000) Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: essential elements for recognition of tRNA substrates within the anticodon stem–loop. Biochemistry 39, 6546–6553.
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: essential elements for recognition of tRNA substrates within the anticodon stem–loop.Crossref | GoogleScholarGoogle Scholar | 10828971PubMed |

Spinola M, Galvan A, Pignatiello C, Conti B, Pastorino U, Nicander B, Paroni R, Dragani TA (2005) Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer. Oncogene 24, 5502–5509.
Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer.Crossref | GoogleScholarGoogle Scholar | 15870694PubMed |

Spinola M, Colombo F, Falvella FS, Dragani TA (2007) N6-isopentenyladenosine: a potential therapeutic agent for a variety of epithelial cancers. International Journal of Cancer 120, 2744–2748.
N6-isopentenyladenosine: a potential therapeutic agent for a variety of epithelial cancers.Crossref | GoogleScholarGoogle Scholar | 17304507PubMed |

Suzuki T, Suzuki T (2014) A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs. Nucleic Acids Research 42, 7346–7357.
A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs.Crossref | GoogleScholarGoogle Scholar | 24831542PubMed |

Suzuki G, Tanaka M (2013) Active conversion to the prion state as a molecular switch for cellular adaptation to environmental stress. BioEssays 35, 12–16.
Active conversion to the prion state as a molecular switch for cellular adaptation to environmental stress.Crossref | GoogleScholarGoogle Scholar | 23175284PubMed |

Suzuki G, Shimazu N, Tanaka M (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336, 355–359.
A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress.Crossref | GoogleScholarGoogle Scholar | 22517861PubMed |

Tolerico LH, Benko AL, Aris JP, Stanford DR, Martin NC, Hopper AK (1999) Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations. Genetics 151, 57–75.

Torres AG, Piñeyro D, Filonava L, Stracker TH, Batlle E, de Pouplana LR (2014) A-to-I editing on tRNAs: biochemical, biological and evolutionary implications. FEBS Letters 588, 4279–4286.
A-to-I editing on tRNAs: biochemical, biological and evolutionary implications.Crossref | GoogleScholarGoogle Scholar | 25263703PubMed |

Trdá L, Barešová M, Šašek V, Nováková M, Zahajská L, Dobrev PI, Motyka V, Burketová L (2017) Cytokinin metabolism of pathogenic fungus Leptosphaeria maculans involves isopentenyltransferase, adenosine kinase and cytokinin oxidase/dehydrogenase. Frontiers in Microbiology 8,
Cytokinin metabolism of pathogenic fungus Leptosphaeria maculans involves isopentenyltransferase, adenosine kinase and cytokinin oxidase/dehydrogenase.Crossref | GoogleScholarGoogle Scholar | 28785249PubMed |

Tully BJ, Graham ED, Heidelberg JF (2018) The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Scientific Data 5, 170203
The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans.Crossref | GoogleScholarGoogle Scholar | 29337314PubMed |

Urban C, Beier H (1995) Cysteine tRNAs of plant origin as novel UGA suppressors. Nucleic Acids Research 23, 4591–4597.
Cysteine tRNAs of plant origin as novel UGA suppressors.Crossref | GoogleScholarGoogle Scholar | 8524647PubMed |

Urbonavicius J (2003) Transfer RNA modifications that alter +1 frameshifting in general fail to affect –1 frameshifting. RNA 9, 760–768.
Transfer RNA modifications that alter +1 frameshifting in general fail to affect –1 frameshifting.Crossref | GoogleScholarGoogle Scholar | 12756333PubMed |

Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Björk GR (2001) Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO Journal 20, 4863–4873.
Improvement of reading frame maintenance is a common function for several tRNA modifications.Crossref | GoogleScholarGoogle Scholar | 11532950PubMed |

Vold BS, Keith DE, Slavik M (1982) Urine levels of N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]-L-threonine, N6-(delta 2-isopentenyl)adenosine, and 2’-O-methylguanosine as determined by radioimmunoassay for normal subjects and cancer patients. Cancer Research 42, 5265–5269.

von Schwartzenberg K, Nunez MF, Blaschke H, Dobrev PI, Novák O, Motyka V, Strnad M (2007) Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins. Plant Physiology 145, 786–800.
Cytokinins in the bryophyte Physcomitrella patens: analyses of activity, distribution, and cytokinin oxidase/dehydrogenase overexpression reveal the role of extracellular cytokinins.Crossref | GoogleScholarGoogle Scholar | 17905863PubMed |

Waller TJ, Read DF, Engelke DR, Smaldino PJ (2017) The human tRNA-modifying protein, TRIT1, forms amyloid fibers in vitro. Gene 612, 19–24.
The human tRNA-modifying protein, TRIT1, forms amyloid fibers in vitro.Crossref | GoogleScholarGoogle Scholar | 27984194PubMed |

Wang L, Haeusler RA, Good PD, Thompson M, Nagar S, Engelke DR (2005) Silencing near tRNA genes requires nucleolar localization. Journal of Biological Chemistry 280, 8637–8639.
Silencing near tRNA genes requires nucleolar localization.Crossref | GoogleScholarGoogle Scholar | 15654076PubMed |

Wang H, Wei L, Li C, Zhou J, Li Z (2015) CDK5RAP1 deficiency induces cell cycle arrest and apoptosis in human breast cancer cell line by the ROS/JNK signaling pathway. Oncology Reports 33, 1089–1096.
CDK5RAP1 deficiency induces cell cycle arrest and apoptosis in human breast cancer cell line by the ROS/JNK signaling pathway.Crossref | GoogleScholarGoogle Scholar | 25607831PubMed |

Wang P-H, Khusnutdinova AN, Luo F, Xiao J, Nemr K, Flick R, Brown G, Mahadevan R, Edwards EA, Yakunin AF (2018) Biosynthesis and activity of prenylated FMN cofactors. Cell Chemical Biology 25, 560–570.e6.
Biosynthesis and activity of prenylated FMN cofactors.Crossref | GoogleScholarGoogle Scholar | 29551348PubMed |

Warner GJ, Berry MJ, Moustafa ME, Carlson BA, Hatfield DL, Faust JR (2000) Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine. Journal of Biological Chemistry 275, 28110–28119.
Inhibition of selenoprotein synthesis by selenocysteine tRNA[Ser]Sec lacking isopentenyladenosine.Crossref | GoogleScholarGoogle Scholar | 10821829PubMed |

Wei F-Y, Zhou B, Suzuki T, Ujihara Y, Horiguchi H, Takahashi N, Xie P, Michiue H, Fujimura A, Kaitsuka T, Matsui H, Koga Y, Mohri S, Suzuki T, Oike Y, Tomizawa K (2015) Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans. Cell Metabolism 21, 428–442.
Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans.Crossref | GoogleScholarGoogle Scholar | 25738458PubMed |

Xiong J, Wang Y, Gu Y, Xue Y, Dang L, Li Y (2018) CDK5RAP1 targeting NF-κB signaling pathway in human malignant melanoma A375 cell apoptosis. Oncology Letters
CDK5RAP1 targeting NF-κB signaling pathway in human malignant melanoma A375 cell apoptosis.Crossref | GoogleScholarGoogle Scholar | 30214556PubMed |

Yarham JW, Lamichhane TN, Pyle A, Mattijssen S, Baruffini E, Bruni F, Donnini C, Vassilev A, He L, Blakely EL, Griffin H, Santibanez-Koref M, Bindoff LA, Ferrero I, Chinnery PF, McFarland R, Maraia RJ, Taylor RW (2014) Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLOS Genetics 10, e1004424
Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.Crossref | GoogleScholarGoogle Scholar | 24901367PubMed |

Zhou W, Karcher D, Bock R (2013) Importance of adenosine-to-inosine editing adjacent to the anticodon in an Arabidopsis alanine tRNA under environmental stress. Nucleic Acids Research 41, 3362–3372.
Importance of adenosine-to-inosine editing adjacent to the anticodon in an Arabidopsis alanine tRNA under environmental stress.Crossref | GoogleScholarGoogle Scholar | 23355609PubMed |

Žižková E, Kubeš M, Dobrev PI, Přibyl P, Šimura J, Zahajská L, Drábková LZ, Novák O, Motyka V (2017) Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Annals of Botany 119, 151–166.
Control of cytokinin and auxin homeostasis in cyanobacteria and algae.Crossref | GoogleScholarGoogle Scholar | 27707748PubMed |

Zou X, Ji C, Jin F, Liu J, Wu M, Zheng H, Wang Y, Li X, Xu J, Gu S, Xie Y, Mao Y (2004) Cloning, characterization and expression of CDK5RAP1_v3 and CDK5RAP1_v4, two novel splice variants of human CDK5RAP1. Genes & Genetic Systems 79, 177–182.
Cloning, characterization and expression of CDK5RAP1_v3 and CDK5RAP1_v4, two novel splice variants of human CDK5RAP1.Crossref | GoogleScholarGoogle Scholar |