Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Rising [CO2] changes competition relationships between native woody and alien herbaceous Cerrado species

Nayara M. J. Melo A B , Rayete S.-E. G. Rosa B , Eduardo G. Pereira B and João Paulo Souza B C
+ Author Affiliations
- Author Affiliations

A Federal University of São Carlos, Campus São Carlos, Department of Botany, Washington Luís Highway, Km 235, CEP 13565-905 São Carlos, São Paulo, Brazil.

B Federal University of Viçosa, Campus Florestal, Institute of Biology, LMG 818, Km 06, CEP 35690-000, Florestal, Minas Gerais, Brazil.

C Corresponding author. Email: joaopaulobio@hotmail.com

Functional Plant Biology 45(8) 854-864 https://doi.org/10.1071/FP17333
Submitted: 23 November 2017  Accepted: 9 February 2018   Published: 13 March 2018

Abstract

The structure of the Cerrado may be explained by the competition between woody and herbaceous species. However, the rising CO2 concentration ([CO2]) predicted under current climatic change may modify the ecophysiological responses of woody and herbaceous species owing to functional traits of each group, which may in turn modify vegetation structure as competitive relationships change among species. In this study we examined ecophysiological responses and competition between two cerrado species under elevated [CO2]. We selected an herbaceous alien grass (Melinis minutiflora P. Beauv.) and an endemic woody cerrado species (Hymenaea stigonocarpa Mart. ex Hayne). Hymenaea stigonocarpa individuals were maintained in three plots with different M. minutiflora densities: 0, 50 and 100% in two different [CO2] (380 ppm and 700 ppm) in open-top chambers. Leaf gas exchange, effective quantum efficiency of PSII, chlorophyll content, and growth increased in H. stigonocarpa plants under high [CO2]. The competition with M. minutiflora under elevated [CO2] led to an increase in specific leaf area, leaf area ratio and biomass allocation to shoots in H. stigonocarpa. In contrast, M. minutiflora had a delayed leaf development and high stem dry mass under elevated [CO2]. These changes in growth patterns under elevated [CO2] will modify allocation of resources, improving the competition potential of the woody species over the alien grass species in the Cerrado.

Additional keywords: biomass partitioning, climate change, endemic species, morphometrical traits, tree–grass interaction.


References

Ainsworth EA, Long SP (2005) What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165, 351–372.
What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2.Crossref | GoogleScholarGoogle Scholar |

Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment 30, 258–270.
The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlemu78%3D&md5=05630ffbb5d61ea4dda2bd5dab16a7c8CAS |

Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochimica et Biophysica Acta 1657, 23–32.
Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage repair cycle of photosystem II in Synechocystis sp. PCC 6803.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Wgu7o%3D&md5=b57cb66a488fdba48336aa8f4431c4e0CAS |

Allakhverdiev SI, Klimov VV, Carpentier R (1997) Evidence of the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. Biochemistry 36, 4149–4154.
Evidence of the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVeht7Y%3D&md5=244509acb398baf18561ed0acce7f4edCAS |

Barros FDV, Goulart MF, Sá Telles SB, Lovato MB, Valladares F, de Lemos‐Filho JP (2012) Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic forest versus Cerrado (savanna). Plant Biology 14, 208–215.

Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research 25, 173–185.
Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtVymsbs%3D&md5=ab776090b4d65c727dd464d902ea3f10CAS |

Bond WJ, Midgley GF (2000) A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Global Change Biology 6, 865–869.
A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas.Crossref | GoogleScholarGoogle Scholar |

Bond WJ, Van Wilgen BW (1996) ‘Fire and plants. Population and community biology series 14.’ (Chapman & Hall: London)

Bond WJ, Midgley GF, Woodward FI (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology 9, 973–982.
The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas.Crossref | GoogleScholarGoogle Scholar |

Botelho SA, Ferreira RA, Malavasi MM, Davide AC (2000) Aspectos morfológicos de frutos, sementes, plântulas e mudas de jatobá-do-Cerrado (Hymenaea stigonocarpa Mart. ex Hayne) – Fabaceae. Revista Brasileira de Sementes 22, 144–152.
Aspectos morfológicos de frutos, sementes, plântulas e mudas de jatobá-do-Cerrado (Hymenaea stigonocarpa Mart. ex Hayne) – Fabaceae.Crossref | GoogleScholarGoogle Scholar |

Buitenwerf R, Bond WJ, Stevens N, Trollope WSW (2012) Increased tree densities in South Africa savannas: >50 years of data suggests CO2 as a driver. Global Change Biology 18, 675–684.
Increased tree densities in South Africa savannas: >50 years of data suggests CO2 as a driver.Crossref | GoogleScholarGoogle Scholar |

Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In ‘Tropical forest plant ecophysiology’. (Eds S Strauss, S Debenedetti, FA Bazzaz, SS Mulkey, RL Chazdon, AP Smith) pp. 5–55. (Springer: New York)

Clarke PJ, Lawes MJ, Midgley JJ, Lamont BB, Ojeda F, Burrows GE, Enright NJ, Knox KJE (2013) Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. New Phytologist 197, 19–35.
Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s%2FptlGmsw%3D%3D&md5=3f9e5979bd1fc5f3e845a99bc1145d8cCAS |

Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113, 299–313.
A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology.Crossref | GoogleScholarGoogle Scholar |

D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23, 63–87.
Biological invasions by exotic grasses, the grass/fire cycle, and global change.Crossref | GoogleScholarGoogle Scholar |

De Souza A, de Moraes MG, Ribeiro RDCLF (2005) Gramíneas do Cerrado: carboidratos não-estruturais e aspectos ecofisiológicos. Acta Botanica Brasílica 19, 81–90.
Gramíneas do Cerrado: carboidratos não-estruturais e aspectos ecofisiológicos.Crossref | GoogleScholarGoogle Scholar |

Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology 48, 609–639.
More efficient plants: a consequence of rising atmospheric CO2?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjs1eltbY%3D&md5=842f27a0e2d080fcae508890cdddf428CAS |

Drake BG, Azcon‐Bieto J, Berry J, Bunce J, Dijkstra P, Farrar J, Gifford RM, Gonzalez-Meller MA, Koch G, Lambers H, Siedow J, Wullschleger S (1999) Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant, Cell & Environment 22, 649–657.
Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXksVartLY%3D&md5=6a10c0f116483fef91bd4e3c1f6cf018CAS |

Franco AC (2002) Ecophysiology of woody plants. In ‘The Cerrados of Brazil’. (Eds PS Oliveira, RJ Marquis) pp. 178–197. (Columbia University Press: New York)

Franco AC (2005) Biodiversidade de forma e função: implicações ecofisiológicas das estratégias de utilização de água e luz em plantas lenhosas do Cerrado. In ‘Cerrado ecologia, biodiversidade e conservação’. (Eds A Scariot, JC Souza-Silva, JM Felfili) pp. 179–196. (Ministério do Meio Ambiente: Brasília)

Franco AC, Nardoto GB, Souza MP (1996) Patterns of soil water potential and seedling survival in the Cerrados of central Brazil. In ‘Sympsio Sobre O Cerrado 8. International symposium on tropical savannas. Biodiversidade e producao sustentavel de alimentos e fibras nos Cerrados: anais’. (Embrapa-CPAC: Planaltina, Brazil)

Françoso RD, Brandão R, Nogueira CC, Salmona YB, Machado RB, Colli GR (2015) Habitat loss and the effectiveness of the protected areas in the Cerrado biodiversity hotspot. Brazilian Journal of Nature Conservation 13, 35–40.
Habitat loss and the effectiveness of the protected areas in the Cerrado biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Freitas GK, Pivello V (2005) A ameaça das gramíneas exóticas à biodiversidade. In ‘O Cerrado Pé-de-Gigante: ecologia e conservação-Parque Estadual de Vassununga’. (Eds VR Pivello, EM Varanda) pp. 283–296. (Secretária de Meio Ambiente: São Paulo, Brazil)

Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 87–92.
The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsFWntL4%3D&md5=9d9e270bbaccee4721105a2ded548bc0CAS |

Ghannoum O, Caemmerer SV, Ziska LH, Conroy JP (2000) The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant, Cell & Environment 23, 931–942.
The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntFGjsb8%3D&md5=e96934365407c31f9a381f1a0d56436bCAS |

Higgins SI, Scheiter S (2012) Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212.
Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFWjtLrJ&md5=d2fc1b4b78e05d9e76bb562ce667fb8eCAS |

Hoffmann WA, Orthen B, Franco AC (2004) Constraints to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia 140, 252–260.
Constraints to seedling success of savanna and forest trees across the savanna-forest boundary.Crossref | GoogleScholarGoogle Scholar |

Instituto Brasileiro de Geografia e Estatística (2015) Available at https://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=312600&search=minas-gerais%7cflorestal%7cinfograficos:-informacoes-completas [Verified 16 February 2018].

Instituto Nacional de Meteorologia (2015) Available at http://www.inmet.gov.br/webcdp/climatologia/normais [Verified 16 February 2018].

Jablonski LM, Wang X, Curtis OS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports of 79 crop and wild species. New Phytologist 156, 9–26.
Plant reproduction under elevated CO2 conditions: a meta-analysis of reports of 79 crop and wild species.Crossref | GoogleScholarGoogle Scholar |

Kanegae MF, Braz VDS, Franco AC (2000) Efeitos da seca sazonal e disponibilidade de luz na sobrevivência e crescimento de Bowdichia virgilioides em duas fitofisionomias típicas dos Cerrados do Brasil Central. Revista Brasileira de Botanica. Brazilian Journal of Botany 23, 459–468.
Efeitos da seca sazonal e disponibilidade de luz na sobrevivência e crescimento de Bowdichia virgilioides em duas fitofisionomias típicas dos Cerrados do Brasil Central.Crossref | GoogleScholarGoogle Scholar |

Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochimica et Biophysica Acta 376, 105–115.
Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXktVGhtr0%3D&md5=43a79398c5853a3c20f4fe12eba8994eCAS |

Klink CA, Machado RB (2005) A conservação do Cerrado brasileiro. Megadiversidade 1, 147–155.

Lorenzi H (1992) ‘Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil.’ (Editora Plantarum: Nova Odessa, Brazil)

Martins CR, Leite LL, Haridasan M (2004) Capim-gordura (Melinis minutiflora P. Beauv.), uma gramínea exótica que compromete a recuperação de áreas degradadas em unidades de conservação. Revista Árvore 28, 739–747.
Capim-gordura (Melinis minutiflora P. Beauv.), uma gramínea exótica que compromete a recuperação de áreas degradadas em unidades de conservação.Crossref | GoogleScholarGoogle Scholar |

Medina E, Silva JF (1990) Savannas of northern South America: a steady state regulated by water-fire interactions on a background of low nutrient availability. Journal of Biogeography 17, 403–413.
Savannas of northern South America: a steady state regulated by water-fire interactions on a background of low nutrient availability.Crossref | GoogleScholarGoogle Scholar |

Mendonça R, Felfili J, Walter B, Silva JC, Jr, Rezende A, Filgueiras T, Nogueira P (1998) Flora vascular do Cerrado. In ‘Cerrado: ambiente e flora’. (Eds S Sano, S Almeida) pp. 288–556. (Empresa Brasileira de Pesquisa Agropecuária – Embrapa, Cerrados: Planaltina, Brasil)

Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynthesis Research 94, 217–224.
Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2ks7fN&md5=cfc23ea6b25f470c3de6a963ac743de3CAS |

Morgan JA, LeCain DR, Pendall E, Blumenthal DM, Kimball BA, Carrillo Y, Williams DG, Heisler-White J, Dijkstra FA, West M (2011) C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476, 202–205.
C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOku77M&md5=46529b1915fd86889a94d7d6c6cb4a23CAS |

Nardoto GB, Souza MP, Franco AC (1998) Estabelecimento e padrões sazonais de produtividade de Kielmeyera coriacea (Spr) Mart. nos Cerrados do Planalto Central: efeitos do estresse hídrico e sombreamento. Revista Brasileira de Botanica. Brazilian Journal of Botany 21, 313–319.
Estabelecimento e padrões sazonais de produtividade de Kielmeyera coriacea (Spr) Mart. nos Cerrados do Planalto Central: efeitos do estresse hídrico e sombreamento.Crossref | GoogleScholarGoogle Scholar |

Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162, 253–280.
Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions?Crossref | GoogleScholarGoogle Scholar |

Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steeger H, van der Heijden A, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167–234.
New handbook for standardised measurement of plant functional traits worldwide.Crossref | GoogleScholarGoogle Scholar |

Pivello VR, Carvalho VMC, Lopes PF, Peccinini AA, Rosso S (1999a) Abundance and distribution of native and alien grasses in a ‘Cerrado’ (Brazilian savanna) biological reserve1. Biotropica 31, 71–82.

Pivello VR, Shida CN, Meirelles ST (1999b) Alien grasses in Brazilian savannas: a threat to the biodiversity. Biodiversity and Conservation 8, 1281–1294.
Alien grasses in Brazilian savannas: a threat to the biodiversity.Crossref | GoogleScholarGoogle Scholar |

Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 104–105, 77–97.
Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration.Crossref | GoogleScholarGoogle Scholar |

Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytologist 157, 175–198.
Plant growth and competition at elevated CO2: on winners, losers and functional groups.Crossref | GoogleScholarGoogle Scholar |

Prado CHBA, De Moraes JAPV (1997) Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions. Photosynthetica 33, 103–112.
Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions.Crossref | GoogleScholarGoogle Scholar |

Pritchard S, Rogers H, Prior SA, Peterson C (1999) Elevated CO2 and plant structure: a review. Global Change Biology 5, 807–837.
Elevated CO2 and plant structure: a review.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2014) ‘R: A language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna) Available at http://www.R-project.org/ [Verified 6 May 2017].

Reich PB, Hobbie SE (2013) Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nature Climate Change 3, 278–282.
Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtVajs74%3D&md5=287b8441ad1c243b4eb0a613b007b5eaCAS |

Reich PB, Uhl C, Walters MB, Ellsworth DS (1991) Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species. Oecologia 86, 16–24.
Leaf lifespan as a determinant of leaf structure and function among 23 Amazonian tree species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC1czotFKlsw%3D%3D&md5=b7f551ccdf23ff81812ed93e2c4b4566CAS |

Reich PB, Hobbie SE, Lee TD (2014) Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nature Geoscience 7, 920–924.
Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVGitbbO&md5=f11046161472bebdc9d3ee56bf809141CAS |

Reid DM, Beall FD, Pharis RP (1991) Environmental cues in plant growth and development. In ‘Plant physiology – a treatise. Vol. X: Growth and development’. (Ed. FC Steward) pp. 65–181. (Academic Press: San Diego, CA, USA)

Ribeiro JF, Walter BMT (2008) As Principais Fitofisionomias de Cerrado. In ‘Cerrado: ambiente e flora’. (Eds SM Sano, SP Almeida) pp. 289–556. (Embrapa-CPAC: Sobradinho, Brasília)

Rossatto DR, Silva LCR, Sternberg LSL, Franco AC (2014) Do woody and herbaceous species compete for soil water across topographic gradients? Evidence for niche partitioning in a Neotropical savanna. South African Journal of Botany 91, 14–18.
Do woody and herbaceous species compete for soil water across topographic gradients? Evidence for niche partitioning in a Neotropical savanna.Crossref | GoogleScholarGoogle Scholar |

Santos KM, Consolaro HN, Moreno MIC, Prado CH, Souza JP (2012) Relationships between crown architecture and available irradiance in two Cerrado species with different leaf phenologies. Brazilian Journal of Botany 35, 339–345.
Relationships between crown architecture and available irradiance in two Cerrado species with different leaf phenologies.Crossref | GoogleScholarGoogle Scholar |

Schäppi B, Körner C (1996) Growth responses of an alpine grassland to elevated CO2. Oecologia 105, 43–52.
Growth responses of an alpine grassland to elevated CO2.Crossref | GoogleScholarGoogle Scholar |

Souza JP, Prado CH, Damascos MA, Albino ALS (2009) Influence of shoot inclination on irradiance and morphophysiological leaf traits along shoots in Cerrado trees with distinct leaf deciduousness. Brazilian Journal of Plant Physiology 21, 281–289.
Influence of shoot inclination on irradiance and morphophysiological leaf traits along shoots in Cerrado trees with distinct leaf deciduousness.Crossref | GoogleScholarGoogle Scholar |

Souza JP, Melo NMJ, Pereira EG, Halfeld AD, Gomes IN, Prado CHB (2016) Responses of woody Cerrado species to rising atmospheric CO2 concentration and water stress: gains and losses. Functional Plant Biology 43, 1183–1193.
Responses of woody Cerrado species to rising atmospheric CO2 concentration and water stress: gains and losses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhvVGqsLbI&md5=10580bd31afdbe9ffb91589da25e5576CAS |

Telfer A, De las Rivas J, Barber J (1991) β-carotene within the isolated photosystem II reaction center: photooxidation and irreversible bleaching of this cromophore by oxidized P680. Biochimica et Biophysica Acta 1060, 106–114.
β-carotene within the isolated photosystem II reaction center: photooxidation and irreversible bleaching of this cromophore by oxidized P680.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xjsleq&md5=e9eb9a811cd830480f91b663c3ce78e2CAS |

Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Finzi AC, Prentice IC (2018) Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytologist 217, 507–522.
Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC1cXit1altQ%3D%3D&md5=2b6ce02d76b471d7e992b3f07101f704CAS |

Tilman D (1982) ‘Resource competition and community structure.’ (Princeton University Press: Princeton, NJ, USA)

Walker BH, Noy-Meir I (1982) Aspects of the stability and resilience of savanna ecosystems. In ‘Ecology of tropical savannas’. (Eds BJ Huntley, BH Walker) pp. 556–590. (Springer: Berlin)

Wand SJ, Midgley G, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta‐analytic test of current theories and perceptions. Global Change Biology 5, 723–741.
Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta‐analytic test of current theories and perceptions.Crossref | GoogleScholarGoogle Scholar |

Ward JK, Strain BR (1999) Elevated CO2 studies: past, present and future. Tree Physiology 19, 211–220.
Elevated CO2 studies: past, present and future.Crossref | GoogleScholarGoogle Scholar |