Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Stimulation of cyclic electron flow around PSI as a response to the combined stress of high light and high temperature in grape leaves

Yongjiang Sun A C , Yulu Gao A B , Hui Wang A B , Xinghong Yang A C , Heng Zhai A B D and Yuanpeng Du A B D
+ Author Affiliations
- Author Affiliations

A State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China.

B College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China.

C College of Life Sciences, Shandong Agricultural University, Tai’an 271018, Shandong, China.

D Corresponding authors. Emails: zhaih@sdau.edu.cn; duyuanpeng001@163.com

Functional Plant Biology 45(10) 1038-1045 https://doi.org/10.1071/FP17269
Submitted: 27 September 2017  Accepted: 6 April 2018   Published: 1 May 2018

Abstract

Changes in cyclic electron flow (CEF) around PSI activity after exposing grape (Vitis vinifera L.) seedling leaves to the combined stress of high temperature (HT) and high light (HL) were investigated. The PSII potential quantum efficiency (Fv/Fm) decreased significantly under exposure to HT, and this decrease was greater when HT was combined with HL, whereas the PSI activity maintained stable. HT enhanced CEF mediated by NAD(P)H dehydrogenase remarkably. Compared with the control leaves, the half-time of P700+ re-reduction decreased during the HT treatment; this decrease was even more pronounced under the combined stress, implying significantly enhanced CEF as a result of the treatment. However, the heat-induced increase in nonphotochemical quenching (NPQ) was greater under HL, accompanied by a greater enhancement in high-energy state quenching. These results suggest that the combined stress of HT and HL resulted in severe PSII photoinhibition, whereas CEF showed plasticity in its response to environmental stress and played an important role in PSII and PSI photoprotection through accelerating generation of the thylakoid proton gradient and the induction of NPQ.

Additional keywords: heat stress, light intensity, photoinhibition, PSI, PSII, photoprotection, Vitis vinifera.


References

Agrawal D, Allakhverdiev SI, Jajoo A (2016) Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 63, 210–215.
Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltlSqtL4%3D&md5=9d75e712236da55798f87e41be3c05deCAS |

Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. Journal of Photochemistry and Photobiology. B, Biology 104, 1–8.
Recent progress in the studies of structure and function of photosystem II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFWjsrY%3D&md5=d80ae0a3f4540802f0567745c5beb757CAS |

Allakhverdiev SI, Klimov VV, Carpentier R (1997) Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. Biochemistry 36, 4149–4154.
Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVeht7Y%3D&md5=244509acb398baf18561ed0acce7f4edCAS |

Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynthesis Research 98, 541–550.
Heat stress: an overview of molecular responses in photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOgt7bF&md5=b51dbf8b11457d68824b5c9732c2c26cCAS |

Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59, 89–113.
Chlorophyll fluorescence: a probe of photosynthesis in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqsL8%3D&md5=eea37a86aa6c49adebecb01da5cc5ad4CAS |

Barber J, Andersson B (1992) Too much of a good thing: light can be bad for photosynthesis. Trends in Biochemical Sciences 17, 61–66.
Too much of a good thing: light can be bad for photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitFWisrw%3D&md5=3ace5cf240c7c3c9394feebf78f201b3CAS |

Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Physiology 31, 491–543.
Photosynthetic response and adaptation to temperature in higher plants.Crossref | GoogleScholarGoogle Scholar |

Burrows PA, Sazanov LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. The EMBO Journal 17, 868–876.
Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1yrtLw%3D&md5=dac39e8220b8fd431a2c5f584ab41195CAS |

Essemine J, Xiao Y, Qu M, Mi H, Zhu XG (2017) Cyclic electron flow may provide some protection against PSII photoinhibition in rice (Oryza sativa L.) leaves under heat stress. Journal of Plant Physiology 211, 138–146.
Cyclic electron flow may provide some protection against PSII photoinhibition in rice (Oryza sativa L.) leaves under heat stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXis1Sisrk%3D&md5=06b3a867bb677219cefb379dd0f7b3f6CAS |

Golding AJ, Finazzi G, Johnson GN (2004) Reduction of the thylakoid electron transport chain by stromal reductants – evidence for activation of cyclic electron transport upon dark adaptation or under drought. Planta 220, 356–363.
Reduction of the thylakoid electron transport chain by stromal reductants – evidence for activation of cyclic electron transport upon dark adaptation or under drought.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVensrbF&md5=3b77c548f6d6e81645c92959c5d111deCAS |

Greer DH, Weedon MM (2012) Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard. Plant Physiology and Biochemistry 54, 59–69.
Interactions between light and growing season temperatures on, growth and development and gas exchange of Semillon (Vitis vinifera L.) vines grown in an irrigated vineyard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xls1amtL4%3D&md5=7c98d483e53b4777a28b2d8c1b22bb97CAS |

Havaux M (1994) Temperature-dependent modulation of the photoinhibition-sensitivity of photosystem II in Solanum tuberosum leaves. Plant & Cell Physiology 35, 757–766.
Temperature-dependent modulation of the photoinhibition-sensitivity of photosystem II in Solanum tuberosum leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlSiur8%3D&md5=2445657c2b5d586f70589c1ca1f765dcCAS |

Havaux M, Strasser RJ (1990) Protection of photosystem II by light in heat-stressed pea leaves. Zeitschrift für Naturforschung C 45, 1133–1141.

Havaux M, Greppin H, Strasser RJ (1991) Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light: analysis using in-vivo fluorescence, absorbance, oxygen and photoacoustic measurements. Planta 186, 88–98.
Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light: analysis using in-vivo fluorescence, absorbance, oxygen and photoacoustic measurements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsFOltw%3D%3D&md5=68fe681d4a1a400c89ec93bbd3640f74CAS |

Hu MJ, Guo YP, Shen YG, Guo DP, Li DY (2009) Midday depression of photosynthesis and effects of mist spray in citrus. Annals of Applied Biology 154, 143–155.
Midday depression of photosynthesis and effects of mist spray in citrus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivVGrsrY%3D&md5=1e843dc6594e58934579b75c2857e5e5CAS |

Huang W, Yang YJ, Hu H, Zhang SB (2015) Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves. Frontiers in Plant Science 6, 923
Different roles of cyclic electron flow around photosystem I under sub-saturating and saturating light intensities in tobacco leaves.Crossref | GoogleScholarGoogle Scholar |

Huang W, Yang YJ, Hu H, Zhang SB (2016) Moderate photoinhibition of photosystem II protects photosystem I from photodamage at chilling stress in tobacco leaves. Frontiers in Plant Science 7, 182
Moderate photoinhibition of photosystem II protects photosystem I from photodamage at chilling stress in tobacco leaves.Crossref | GoogleScholarGoogle Scholar |

Ivanov AG, Krol M, Zeinalov Y, Huner NPA, Sane PV (2008) The lack of LHCII proteins modulates excitation energy partitioning and PSII charge recombination in Chlorina F2 mutant of barley. Physiology and Molecular Biology of Plants 14, 205–215.
The lack of LHCII proteins modulates excitation energy partitioning and PSII charge recombination in Chlorina F2 mutant of barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCisbrL&md5=f78df32cd003f440ac9379efc4cc95a7CAS |

Järvi S, Suorsa M, Tadini L, Ivanauskaite A, Rantala S, Allahverdiyeva Y, Leister D, Aro EM (2016) Thylakoid-bound FtsH proteins facilitate proper biosynthesis of photosystem I. Plant Physiology 171, 1333–1343.

Johnson GN, Young AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant, Cell & Environment 16, 673–679.
The dissipation of excess excitation energy in British plant species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVaguro%3D&md5=bfbed831396095c3986bcb25a5f70f8eCAS |

Klughammer C, Schreiber U (1994) An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm. Planta 192, 261–268.
An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXnt1OjtA%3D%3D&md5=b46c11fa0101b01cfdbf049d2b11603bCAS |

Klughammer C, Schreiber U (2008) Complementary PS II quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the saturation pulse method. PAM Application Notes 1, 27–35.

Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research 79, 209–218.
New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtV2qu70%3D&md5=47094b7a43e935f7bd2b0f2814a0e439CAS |

Laisk A, Talts E, Oja V, Eichelmann H, Peterson RB (2010) Fast cyclic electron transport around photosystem I in leaves under far-red light: a proton-uncoupled pathway? Photosynthesis Research 103, 79–95.
Fast cyclic electron transport around photosystem I in leaves under far-red light: a proton-uncoupled pathway?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWisg%3D%3D&md5=8517b7b5f23dd001d7f7c0e5e045d946CAS |

Li Q, Yao ZJ, Mi H (2016) Alleviation of photoinhibition by co-ordination of chlororespiration and cyclic electron flow mediated by NDH under heat stressed condition in tobacco. Frontiers in Plant Science 7, 285

Lu T, Shi JW, Sun ZP, Qi MF, Liu YF, Li TL (2017) Response of linear and cyclic electron flux to moderate high temperature and high light stress in tomato. Journal of Zhejiang University Science B. Biomedicine & Biotechnology 18, 635–648.

Marutani Y, Yamauchi Y, Miyoshi A, Inoue K, Ikeda KI, Mizutani M, Sugimoto Y (2014) Regulation of photochemical energy transfer accompanied by structural changes in thylakoid membranes of heat-stressed wheat. International Journal of Molecular Sciences 15, 23042–23058.
Regulation of photochemical energy transfer accompanied by structural changes in thylakoid membranes of heat-stressed wheat.Crossref | GoogleScholarGoogle Scholar |

Mathur S, Allakhverdiev SI, Jajoo A (2011) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochimica et Biophysica Acta - Bioenergetics 1807, 22–29.
Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVagurvK&md5=5dbbf0390f33de466b335b49a7597d7eCAS |

Mehta PA, Allakhverdiev SI, Jajoo A (2010) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research 105, 249–255.
Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWrtbjP&md5=461851c0755779a8625b80ca3cf1c56cCAS |

Mi H, Endo T, Ogawa T, Asada K (1995) Thylakoid membrane-bound, NADPH-specific pyridine nucleotide dehydrogenase complex mediates cyclic electron transport in the cyanobacterium Synechocystis sp. PCC 6803. Plant & Cell Physiology 36, 661–668.

Miyake C, Miyata M, Shinzaki Y, Tomizawa KI (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves – relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant & Cell Physiology 46, 629–637.
CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves – relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslGrtLY%3D&md5=eda67a30f44c978753a734b6bf784f65CAS |

Morgan-Kiss R, Ivanov AG, Williams J, Khan M, Huner NP (2002) Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochimica et Biophysica Acta - Biomembranes 1561, 251–265.
Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjsVSlu7c%3D&md5=058b6e539ab1baebffc1e5eabc1d0477CAS |

Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiology 125, 1558–1566.
Non-photochemical quenching. A response to excess light energy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFKqtr0%3D&md5=fb390206ab4833377c9c8a09b8a7def0CAS |

Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110, 361–371.
PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmtl2rs78%3D&md5=23059eeab051623c090e5bcd98da39edCAS |

Munekage Y, Hashimoto M, Miyake C, Tomizawa KI, Endo T, Tasaka M, Shikanai T (2004) Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579–582.
Cyclic electron flow around photosystem I is essential for photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks1CgtLg%3D&md5=0099032c5b7273462e47c000876f0405CAS |

Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta 1767, 414–421.
Photoinhibition of photosystem II under environmental stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmt1ygsLw%3D&md5=a395acb8b8de3c20e3c70839372f6e44CAS |

Pribil M, Labs M, Leister D (2014) Structure and dynamics of thylakoids in land plants. Journal of Experimental Botany 65, 1955–1972.
Structure and dynamics of thylakoids in land plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsVGku7k%3D&md5=a0f86be88bcd1fc08180520d0fc39764CAS |

Quiles MJ (2006) Stimulation of chlororespiration by heat and high light intensity in oat plants. Plant, Cell & Environment 29, 1463–1470.
Stimulation of chlororespiration by heat and high light intensity in oat plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotlSmt7o%3D&md5=c12457073a9fbdb3f394d38a946dde1eCAS |

Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology 170, 1903–1916.
Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVOgsrbI&md5=dbd3d5432e539fca6adda49a8fcdf690CAS |

Sato R, Ohta H, Masuda S (2014) Prediction of respective contribution of linear electron flow and PGR5-dependent cyclic electron flow to non-photochemical quenching induction. Plant Physiology and Biochemistry 81, 190–196.
Prediction of respective contribution of linear electron flow and PGR5-dependent cyclic electron flow to non-photochemical quenching induction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlvFeltLo%3D&md5=8db66743186ba9e80fbdd41d0b36830cCAS |

Sharkey TD (2005) Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. Plant, Cell & Environment 28, 269–277.
Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXislKqs78%3D&md5=41c6228a515d7cb25b55b8a9287d2274CAS |

Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annual Review of Plant Physiology 58, 199–217.

Shikanai T (2014) Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Current Opinion in Biotechnology 26, 25–30.
Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1Cns7g%3D&md5=b02412c1eb42ab94d47020fc64dc6da9CAS |

Sonoike K (2011) Photoinhibition of photosystem I. Physiologia Plantarum 142, 56–64.
Photoinhibition of photosystem I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFWhsL0%3D&md5=ae13c9fea2943235dd4c42624125628dCAS |

Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research 52, 147–155.
Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmtFSkurg%3D&md5=5e84b74a62c12ae3af54e9df2b9d380eCAS |

Sukhov V (2016) Electrical signals as mechanism of photosynthesis regulation in plants. Photosynthesis Research 130, 373–387.
Electrical signals as mechanism of photosynthesis regulation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsV2it7g%3D&md5=7d2f4cf11f7d1e8fb5ae77540ce8cf18CAS |

Sukhov V, Surova L, Sherstneva O, Vodeneev V (2014) Influence of variation potential on resistance of the photosynthetic machinery to heating in pea. Physiologia Plantarum 152, 773–783.
Influence of variation potential on resistance of the photosynthetic machinery to heating in pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVamtL3J&md5=cfcd0f17fa02c4a6a8770932ec34960cCAS |

Sukhov V, Surova L, Sherstneva O, Katicheva L, Vodeneev V (2015) Variation potential influence on photosynthetic cyclic electron flow in pea. Frontiers in Plant Science 5, 766
Variation potential influence on photosynthetic cyclic electron flow in pea.Crossref | GoogleScholarGoogle Scholar |

Sukhova E, Akinchits E, Sukhov V (2017) Mathematical models of electrical activity in plants. Journal of Membrane Biology 250, 407–423.
Mathematical models of electrical activity in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtFOlu7%2FE&md5=34b09bcafac5a05e902072ca2ddec0f7CAS |

Sun Y, Geng Q, Du Y, Yang X, Zhai H (2017) Induction of cyclic electron flow around photosystem I during heat stress in grape leaves. Plant Science 256, 65–71.
Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitFOhsLrI&md5=eca4d49da534f726af99291d51946461CAS |

Suorsa M, Järvi S, Grieco M, Nurmi M, Pietrzykowska M, Rantala M, Kangasjärvi S, Paakkarinen V, Tikkanen M, Jansson S, Aro EM (2012) PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions. The Plant Cell 24, 2934–2948.
PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlChsbzO&md5=cb9c50c09485a71f82060ab4794b6ddcCAS |

Surova L, Sherstneva O, Vodeneev V, Sukhov V (2016) Variation potential propagation decreases heat-related damage of pea photosystem I by 2 different pathways. Plant Signaling & Behavior 11, e1145334
Variation potential propagation decreases heat-related damage of pea photosystem I by 2 different pathways.Crossref | GoogleScholarGoogle Scholar |

Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science 16, 53–60.
Photoprotection in plants: a new light on photosystem II damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjvFOgtw%3D%3D&md5=1e82c8012b07f6427815ccc0b8d0d796CAS |

Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends in Plant Science 13, 178–182.
How do environmental stresses accelerate photoinhibition?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksleisrY%3D&md5=cce3dbdce2f60a4ed10c5b9a17276370CAS |

Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009) How does cyclic electron flow I alleviate photoinhibition in Arabidopsis? Plant Physiology 149, 1560–1567.
How does cyclic electron flow I alleviate photoinhibition in Arabidopsis?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFCiu74%3D&md5=86c46ed13abd08ea14c30cd931235f4fCAS |

Tikkanen M, Mekala NR, Aro EM (2014) Photosystem II photoinhibition–repair cycle protects Photosystem I from irreversible damage. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1837, 210–215.
Photosystem II photoinhibition–repair cycle protects Photosystem I from irreversible damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFWitrrN&md5=02857011193f2a060d86d274bf626761CAS |

Tiwari A, Jajoo A, Bharti S (2008) Heat-induced changes in photosystem I activity as measured with different electron donors in isolated spinach thylakoid membranes. Photochemical & Photobiological Sciences 7, 485–491.
Heat-induced changes in photosystem I activity as measured with different electron donors in isolated spinach thylakoid membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1Srsrw%3D&md5=bc9b5691feab4016eb09465eb7828ce6CAS |

Tiwari A, Mamedov F, Grieco M, Suorsa M, Jajoo A, Styring S, Tikkanen M, Aro EM (2016) Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nature Plants 2, 16035
Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlvF2qsLs%3D&md5=d91b7503044246006cc7ebe27ebd26b0CAS |

Trebst A (2007) Inhibitors in the functional dissection of the photosynthetic electron transport system. Photosynthesis Research 92, 217–224.
Inhibitors in the functional dissection of the photosynthetic electron transport system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFOjsrs%3D&md5=66ff81014cf879581e48ca0d2b23e0d6CAS |

Tyystjärvi E (2013) Photoinhibition of photosystem II. International Review of Cell and Molecular Biology 300, 243–303.
Photoinhibition of photosystem II.Crossref | GoogleScholarGoogle Scholar |

Várkonyi Z, Nagy G, Lambrev P, Kiss AZ, Székely N, Rosta L, Garab G (2009) Effect of phosphorylation on the thermal and light stability of the thylakoid membranes. Photosynthesis Research 99, 161–171.
Effect of phosphorylation on the thermal and light stability of the thylakoid membranes.Crossref | GoogleScholarGoogle Scholar |

Vodeneev V, Akinchits E, Sukhov V (2015) Variation potential in higher plants: mechanisms of generation and propagation. Plant Signaling & Behavior 10, e1057365
Variation potential in higher plants: mechanisms of generation and propagation.Crossref | GoogleScholarGoogle Scholar |

Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye JY, Mi H (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiology 141, 465–474.
Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aktrg%3D&md5=bafecbdd214565df66632abb63920650CAS |

Xu ZZ, Zhou GS (2005) Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant and Soil 269, 131–139.
Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1Ojtbg%3D&md5=d2070f6f441126f3b2259ef6dda51a9dCAS |

Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annual Review of Plant Biology 67, 81–106.
Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjsVGls7c%3D&md5=89616a9c42700bd8a103caa28757507bCAS |

Yin Y, Li S, Liao W, Lu Q, Wen X, Lu C (2010) Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. Journal of Plant Physiology 167, 959–966.
Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsVClsbw%3D&md5=007dd73b13d30fe3cf7ae13dcfec6dd2CAS |

Zhang Z, Jia Y, Gao H, Zhang L, Li H, Meng Q (2011) Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves. Planta 234, 883–889.
Characterization of PSI recovery after chilling-induced photoinhibition in cucumber (Cucumis sativus L.) leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtl2ht7rK&md5=ebe2a619e4d5d344133a1ff1c947c7edCAS |

Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynthesis Research 126, 449–463.
Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlslegu7w%3D&md5=84bfa1c5c91364b979220ea917511ef6CAS |