Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Seasonal variations of leaf chlorophyll–protein complexes in the wintergreen herbaceous plant Ajuga reptans L.

Olga Dymova A G , Mikhail Khristin B , Zbigniew Miszalski C D , Andrzej Kornas E G , Kazimierz Strzalka D F and Tamara Golovko A
+ Author Affiliations
- Author Affiliations

A Institute of Biology, Komi Research Center, Ural Branch, Russian Academy of Sciences, Kommunisticheskaya 28, 167982 Syktyvkar, Russia.

B Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Russia.

C The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland.

D Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Kraków, Poland.

E Institute of Biology, Pedagogical University of Cracow, Podchorazych 2, 30-084 Kraków, Poland.

F Department of Plant Physiology and Biochemistry, Faculty and Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.

G Corresponding authors. Emails: dymovao@ib.komisc.ru; anko@up.krakow.pl

Functional Plant Biology 45(5) 519-527 https://doi.org/10.1071/FP17199
Submitted: 15 July 2017  Accepted: 7 November 2017   Published: 5 January 2018

Abstract

The chlorophyll and carotenoid content, and the spectra of low-temperature fluorescence of the leaves, chloroplasts and isolated pigment–protein complexes in the perennial herbaceous wintergreen plant Ajuga reptans L. (bugle) in different seasons of the year were studied. During winter, these plants downregulate photosynthesis and the PSA is reorganised, including the loss of chlorophyll, possible reductions in the number of functional reaction centres of PSII, and changes in aggregation of the thylakoid protein complexes. We also observed a restructuring of the PSI–PSII megacomplex and the PSII–light-harvesting complex II supercomplex in leaves covered by snow. After snowmelt, the monomeric form of the chl a/b pigment–protein complex associated with PSII (LHCII) and the free pigments were also detected. We expect that snow cover provides favourable conditions for keeping photosynthetic machinery ready for photosynthesis in spring just after snowmelt. During winter, the role of the zeaxanthin-dependent protective mechanism, which is responsible for the dissipation of excess absorbed light energy, is likely to increase.

Additional keywords: bugle, chl a/b pigment–protein complex, low-temperature (77K) chlorophyll fluorescence, photosynthetic pigments, PSI, PSII.


References

Adams WW, Demmig-Adams B (1994) Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiologia Plantarum 92, 451–458.
Carotenoid composition and down regulation of photosystem II in three conifer species during the winter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitFersb0%3D&md5=9a0647fc889bc1c1c3f4e826cd2a97c5CAS |

Adams WW, Demmig-Adams B, Rosenstiel TN, Brightwell AK, Ebbert V (2002) Photosynthesis and photoprotection in overwintering plants. Plant Biology 4, 545–557.
Photosynthesis and photoprotection in overwintering plants.Crossref | GoogleScholarGoogle Scholar |

Alfonso M, Montoya G, Cases R, Rodriques R, Picorel R (1994) Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition. Biochemistry 33, 10494–10500.
Core antenna complexes, CP43 and CP47, of higher plant photosystem II. Spectral properties, pigment stoichiometry, and amino acid composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlSit7c%3D&md5=c03b97d0c1ee3f862bac70d35082550cCAS |

Aro E-M, Ohad I (2003) Redox regulation of thylakoid protein phosphorylation. Antioxidants & Redox Signalling 5, 55–67.
Redox regulation of thylakoid protein phosphorylation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhslGrsLc%3D&md5=b82c8e1d84ca1c17f0d1b2ef566a1292CAS |

Björkman O, Demmig-Adams B (1995) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In ‘Ecophysiology of photosynthesis. Ecological studies 100’. (Eds E-D Schulze, MM Caldwell) pp. 17–47. (Springer: Berlin)

Danielsson R, Suorsa M, Paakkarinen V, Albertsson P-Å, Styring S, Aro E-M, Mamedov F (2006) Dimeric and monomeric organization of photosystem II. The Journal of Biological Chemistry 281, 14241–14249.
Dimeric and monomeric organization of photosystem II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFeisb0%3D&md5=b2031c5df0e6dde8cfdf96c51f73dea3CAS |

Duysen ME, Freeman TP, Williams ND, Olson LL (1984) Regulation of excitation energy in a wheat mutant deficient in light-harvesting pigment–protein complex. Plant Physiology 76, 561–566.
Regulation of excitation energy in a wheat mutant deficient in light-harvesting pigment–protein complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXktlSlsg%3D%3D&md5=0d6095b6d64ec22f1cf693e69f0bbaedCAS |

Dymova OV, Golovko TK (2001) Structural and functional characteristics of Ajuga reptans photosynthesis under cold climate conditions. Russian Journal of Plant Physiology 48, 345–352.
Structural and functional characteristics of Ajuga reptans photosynthesis under cold climate conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVShtrk%3D&md5=f421de6607612190c8ee8265c78aa3fdCAS |

Dymova OV, Grzyb J, Golovko TK, Strzalka K (2010) Characterization of pigment apparatus in winter-green and summer-green leaves of a shade-tolerant plant Ajuga reptans. Russian Journal of Plant Physiology 57, 755–763.
Characterization of pigment apparatus in winter-green and summer-green leaves of a shade-tolerant plant Ajuga reptans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlyjsLvL&md5=310ef51ca1ec325b91ead2c45a39670eCAS |

Ensminger I, Sveshnikov D, Campbell DA, Funks Ch, Jansson S, Lloyd J, Shibistova O, Öquist G (2004) Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biology 10, 995–1008.
Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests.Crossref | GoogleScholarGoogle Scholar |

Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838.
Architecture of the photosynthetic oxygen-evolving center.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFehtbs%3D&md5=84c2f9491c81d021bd3cf437225d2a44CAS |

Graves JD (1990) A model of the seasonal pattern of carbon acquisition in two woodland herbs, Mercurialis perennis L. and Geum urbanum L. Oecologia 83, 479–484.
A model of the seasonal pattern of carbon acquisition in two woodland herbs, Mercurialis perennis L. and Geum urbanum L.Crossref | GoogleScholarGoogle Scholar |

Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chemical Physics Letters 483, 262–267.
Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVCrur%2FN&md5=1cbaf0273250f0be5cb0e74509673842CAS |

Horton P, Walters RG, Ruban AV (1996) Regulation of light harvesting in green plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 655–684.
Regulation of light harvesting in green plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtlWgt70%3D&md5=5ad632086076009aeea6f3612369c7eeCAS |

Humbeck K, Romer S, Senger H (1989) Evidence for an essential role of carotenoids in the assembly of an active photosystem II. Planta 179, 242–250.
Evidence for an essential role of carotenoids in the assembly of an active photosystem II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlslWgs74%3D&md5=a988cbe22116a3d6549dff5e5cd96415CAS |

Ivanov AG, Krol M, Sveshnikov D, Malmberg G, Gardeström P, Hurry V, Oquist G, Huner NP (2006) Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Planta 223, 1165–1177.
Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12qtb8%3D&md5=b5e8ddc651ed6176dd0b637b05708a60CAS |

Janik E, Maksymiec W, Grudzinski W, Gruszecki WI (2012) Strong light-induced reorganization of pigment–protein complexes of thylakoid membranes in rye (spectroscopic study). Journal of Plant Physiology 169, 65–71.
Strong light-induced reorganization of pigment–protein complexes of thylakoid membranes in rye (spectroscopic study).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Sgt7jL&md5=c4875cd8367e67cc080fa2fd7e04191aCAS |

Kobayashi M, Maeda H, Watanabe T, Nakane H, Satoh K (1990) Chlorophyll a and β-carotene content in the D1/D2/cytochrome b-559 reaction center complex from spinach. FEBS Letters 260, 138–140.
Chlorophyll a and β-carotene content in the D1/D2/cytochrome b-559 reaction center complex from spinach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhtlKit74%3D&md5=99093b3d0772df19538607350b8ac667CAS |

Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology 42, 313–349.
Chlorophyll fluorescence and photosynthesis: the basics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltFSmsrc%3D&md5=2c653d591bf905cd3d4df9a6ddabb70eCAS |

Kuźniak E, Kornas A, Kaźmierczak A, Rozpądek P, Nosek M, Kocurek M, Zellnig G, Müller M, Miszalski Z (2016) Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3–CAM intermediate plant Mesembryanthemum crystallinum. Annals of Botany 117, 1141–1151.
Photosynthesis-related characteristics of the midrib and the interveinal lamina in leaves of the C3–CAM intermediate plant Mesembryanthemum crystallinum.Crossref | GoogleScholarGoogle Scholar |

Ladygin VG, Allakverdiev SI, Chetverikov AG (1990) Effect of light-harvesting complex reduction on the photosynthetic unit value and the number of reaction centres in photosystems from Chlamydomonas reinhardii mutants. Biophysics 35, 280–284. [In Russian]

Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292.
Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFCntbc%3D&md5=2b57f5560f85aef413d92cc1409d2a06CAS |

Lundell R, Saarinen T, Åström H, Hänninen H (2008) The boreal dwarf shrub Vaccinium vitis-idaea retains its capacity for photosynthesis through the winter. Botany 86, 491–500.
The boreal dwarf shrub Vaccinium vitis-idaea retains its capacity for photosynthesis through the winter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFOitr0%3D&md5=a426571f98256fd36e980886deb102e3CAS |

Miersch I, Heise J, Zelmer I, Humbeck K (2000) Differential degradation of the photosynthetic apparatus during leaf senescence in barley (Hordeum vulgare L.). Plant Biology 2, 618–623.
Differential degradation of the photosynthetic apparatus during leaf senescence in barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar |

Miszalski Z, Niewiadomska E, Kepa E, Skawinski P (2000) Evaluating the superoxide dismutase activity and chlorophyll fluorescence in Picea abies leaves growing at different altitudes. Journal of Plant Physiology 38, 379–384.

Miszalski Z, Skoczowski A, Silina E, Dymova O, Golovko T, Kornas A, Strzalka K (2016) Photosynthetic activity of vascular bundles in Plantago media leaves. Journal of Plant Physiology 204, 36–43.
Photosynthetic activity of vascular bundles in Plantago media leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Sgs7%2FP&md5=147cce53c7b861e5ac570b1f2e71f6b1CAS |

Miszalski Z, Kornaś A, Kuźniak E (2017) Photosynthesis-related functions of vasculature-associated chlorenchymatous cells. Progress in Botany
Photosynthesis-related functions of vasculature-associated chlorenchymatous cells.Crossref | GoogleScholarGoogle Scholar |

Moy A, Le S, Verhoeven A (2015) Different strategies for photoprotection during autumn senescence in maple and oak. Physiologia Plantarum 155, 205–216.
Different strategies for photoprotection during autumn senescence in maple and oak.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVyisr7F&md5=2f7ff1284195f4cf82fd5876c8ac9c07CAS |

Niewiadomska E, Polzien L, Desel Ch, Rozpadek P, Miszalski Z, Krupinska K (2009) Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves. Journal of Plant Physiology 166, 1057–1068.
Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnslGgsr4%3D&md5=33dcf7f2047f3f623890ba66e148c3eeCAS |

Niewiadomska E, Bilger W, Gruca M, Mulisch M, Miszalski Z, Krupinska K (2011) CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L. Planta 233, 275–285.
CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVemu7k%3D&md5=31aed7fc60e8257d9b0ae4b973387fc8CAS |

Ottander C, Campbell D, Öquist G (1995) Seasonal changes in photosystem II organization and pigment composition in Pinus sylvestris. Planta 197, 176–183.
Seasonal changes in photosystem II organization and pigment composition in Pinus sylvestris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvVKrt7s%3D&md5=46748b38e37566a75acea7e7f90b4a9aCAS |

Peter GF, Thornber JP (1991) Electrophoretic procedures for fraction of photosystems I and II pigment-proteins of their subunit composition. In: ‘Methods in plant biochemistry 5’. (Ed. LJ Rogers) pp. 195–210. (Academic Press: New York)

Rochaix JD (2011) Assembly of the photosynthetic apparatus. Plant Physiology 155, 1493–1500.
Assembly of the photosynthetic apparatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVOrsLw%3D&md5=3d8e64109aadeed7c55fdf5cd75dd5cfCAS |

Schindler C, Lichtenthaler HK (1996) Photosynthetic CO2 assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and cloudy day. Journal of Plant Physiology 148, 399–412.
Photosynthetic CO2 assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and cloudy day.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjslWjs70%3D&md5=fb07844e216ff7bc9cc151ec3b7d5876CAS |

Skillman JB, Strain BR, Osmond CB (1996) Contrasting patterns of photosynthetic acclimation and photoinhibition in two evergreen herbs from a winter deciduous forest. Oecologia 107, 446–455.
Contrasting patterns of photosynthetic acclimation and photoinhibition in two evergreen herbs from a winter deciduous forest.Crossref | GoogleScholarGoogle Scholar |

Sofronova VE, Chepalov VA, Dymova OV, Golovko TK (2014) The role of pigment system of an evergreen dwarf shrub Ephedra monosperma in adaptation to the climate of Central Yakutia. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 61, 246–254.
The role of pigment system of an evergreen dwarf shrub Ephedra monosperma in adaptation to the climate of Central Yakutia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjs1Omurw%3D&md5=750b315f735b364f23965badfcef55b3CAS |

Sofronova VE, Dymova OV, Golovko TK, Chepalov VA, Petrov KA (2016) Adaptive changes in pigment complex of Pinus sylvestris needles upon cold climate. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 63, 433–442.
Adaptive changes in pigment complex of Pinus sylvestris needles upon cold climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVCmtb%2FF&md5=a7188996aed907e0dfa56f40ee9208b2CAS |

Somersalo S, Krause GH (1989) Photoinhibition at chilling temperature. Fluorescence characteristics of unhardened and cold-acclimated spinach leaves. Planta 177, 409–416.
Photoinhibition at chilling temperature. Fluorescence characteristics of unhardened and cold-acclimated spinach leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXitV2nurw%3D&md5=8d2bc824e9112aec39f5e49025e94171CAS |

Sonoike K (2011) Photoinhibition of photosystem I. Physiologia Plantarum 142, 56–64.
Photoinhibition of photosystem I.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFWhsL0%3D&md5=ae13c9fea2943235dd4c42624125628dCAS |

Standfuss R, van Scheltinga ACT, Lamborghini M, Kuhlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. The EMBO Journal 24, 919–928.
Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitV2itr0%3D&md5=098c5f93e2dcd8be7d27c014cf79c7e2CAS |

Starr G, Oberbauer SF (2003) Photosynthesis of arctic evergreens under snow: implications for tundra ecosystem carbon balance. Ecology 84, 1415–1420.
Photosynthesis of arctic evergreens under snow: implications for tundra ecosystem carbon balance.Crossref | GoogleScholarGoogle Scholar |

Tang Y, Wen X, Lu C (2005) Differential changes in degradation of chlorophyll protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiology and Biochemistry 43, 193–201.
Differential changes in degradation of chlorophyll protein complexes of photosystem I and photosystem II during flag leaf senescence of rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFKlu7s%3D&md5=a0c3ff99f5f97222a838a72000b2cb64CAS |

Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D (2003) Functional analysis of and ring carotenoid hydroxylases in Arabidopsis. The Plant Cell 15, 1320–1332.
Functional analysis of and ring carotenoid hydroxylases in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVeksbY%3D&md5=a47fcd96ed34ef48336197fc5658212dCAS |

van Dorssen RJ, Plijter JJ, Dekker JP, den Ouden A, Amesz J, van Gorkom HJ (1987) Spectroscopic properties of chloroplast grana membranes and of the core of Photosystem II. Biochimica et Biophysica Acta 890, 134–143.
Spectroscopic properties of chloroplast grana membranes and of the core of Photosystem II.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtFKlurY%3D&md5=94169bc6a09177f1dd78edb3889b61a9CAS |

Verhoeven AS (2014) Sustained energy dissipation in winter evergreens. New Phytologist 201, 57–65.
Sustained energy dissipation in winter evergreens.Crossref | GoogleScholarGoogle Scholar |

Verhoeven AS, Adams WWIII, Demmig-Adams B (1999) The xanthophylls cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress. Oecologia 118, 277–287.
The xanthophylls cycle and acclimation of Pinus ponderosa and Malva neglecta to winter stress.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC1cznsFOrsg%3D%3D&md5=98d1a1022106a97b747c7d12549d7b71CAS |

Vogg G, Heiml R, Hansenl J, Schaèferl C, Beck E (1998) Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function. Planta 204, 193–200.
Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotFCmtg%3D%3D&md5=f3f23561126f7bbdf2aa0e9a9bc9f13fCAS |

Wentworth M, Ruban AV, Horton P (2004) The functional significance of the monomeric and trimeric states of the phootsystem II light harvesting complex. Biochemistry 43, 501–509.
The functional significance of the monomeric and trimeric states of the phootsystem II light harvesting complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVSmsrg%3D&md5=e859ab7b32859da8f37a0e4536e29a77CAS |

Yamamoto HY, Bassi R (1996) Carotenoids: localization and function. In ‘Oxygenic photosynthesis: the light reactions’. (Eds DR Ort, CF Yoccum) pp. 539–563. (Kluwer Press: Dordrecht)

Yatsko YN, Dymova OV, Golovko TK (2011) Violaxanthin cycle pigment de-epoxidation and thermal dissipation of light energy in three boreal species of evergreen conifer plants. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology 58, 169–173.
Violaxanthin cycle pigment de-epoxidation and thermal dissipation of light energy in three boreal species of evergreen conifer plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs12mtA%3D%3D&md5=bda91ca8da875357c5d998e8b37b21c8CAS |