Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

From little things big things grow: karrikins and new directions in plant development

Mark T. Waters
+ Author Affiliations
- Author Affiliations

School of Molecular Sciences and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA 6009, Australia. Email: mark.waters@uwa.edu.au

Functional Plant Biology 44(4) 373-385 https://doi.org/10.1071/FP16405
Submitted: 13 November 2016  Accepted: 16 January 2017   Published: 28 February 2017

Abstract

Karrikins are a family of compounds generated via the incomplete combustion of plant matter. Since their discovery as seed germination stimulants in 2004, a great deal has been learned about the chemistry and the biological mode of action of karrikins. Much interest and progress have stemmed from the structural similarity of karrikins to that of strigolactones – the shoot branching hormone. This review will provide a historical account of some of the more significant discoveries in this area of plant biology. It will discuss how the study of these abiotic signalling molecules, combined with advances in our understanding of strigolactones, has led us towards the discovery of new mechanisms that regulate plant growth and development.

Additional keywords: bioassay, chemical biology, plant development, plant hormone, signalling, strigolactone.


References

Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proceedings of the National Academy of Sciences of the United States of America 111, 18084–18089.
Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2jsL7F&md5=42465fffb2a33b319e91b168e1b44c2dCAS |

Abeles FB, Morgan PW, Saltveit ME, Jr (1992) ‘Ethylene in plant biology.’ (Academic Press: New York)

Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America 108, 20242–20247.
Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1yqsb3P&md5=8eb3c4e9be05b50407e65133a02de677CAS |

Akiyama K, Matsuzaki K-I, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827.
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvVGgsL4%3D&md5=d588b22b5a36c2d71048fbf82fe8b151CAS |

Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology 66, 161–186.
Strigolactones, a novel carotenoid-derived plant hormone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVajtbvL&md5=696b117dfefa19f8164655f987611e77CAS |

Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn-de Vries H, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164, 711–729.

Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. The Plant Journal 51, 1019–1029.
DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFKnur7I&md5=11da8a2f0178ba1bfbc3ad64ffc7a6d0CAS |

Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant & Cell Physiology 50, 1416–1424.
d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWitbvP&md5=be0a550989e64902425930c1a8ca419fCAS |

Baldwin IT, Staszak-Kozinski L, Davidson R (1994) Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson. Journal of Chemical Ecology 20, 2345–2371.
Up in smoke: I. Smoke-derived germination cues for postfire annual, Nicotiana attenuata torr. Ex. Watson.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhtFyhtLo%3D&md5=b7e17a1fa5e2ba95bd7bd7d2d7196107CAS |

Baxter BJM, Baxter BJM, Granger JE, Granger JE, van Staden J, van Staden J (1995) Plant-derived smoke and seed germination: is all smoke good smoke? That is the burning question. South African Journal of Botany 61, 275–277.
Plant-derived smoke and seed germination: is all smoke good smoke? That is the burning question.Crossref | GoogleScholarGoogle Scholar |

Bennett T, Liang Y, Seale M, Ward S, Müller D, Leyser O (2016) Strigolactone regulates shoot development through a core signalling pathway. Biology Open 5, 1806–1820.
Strigolactone regulates shoot development through a core signalling pathway.Crossref | GoogleScholarGoogle Scholar |

Beveridge CA, Ross JJ, Murfet IC (1996) Branching in pea (action of genes Rms3 and Rms4). Plant Physiology 110, 859–865.
Branching in pea (action of genes Rms3 and Rms4).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xhs1GisLY%3D&md5=db30484ff6e376236232c6a684f72d96CAS |

Beveridge CA, Symons GM, Murfet IC, Ross JJ, Rameau C (1997) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiology 115, 1251–1258.
The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1ykurY%3D&md5=86129b5bfe04757c1b8fce4e612e9c01CAS |

Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Current Biology 14, 1232–1238.
MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtVams7s%3D&md5=aa37dfcb14db12cb67f8c38f11e9159bCAS |

Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends in Plant Science 12, 224–230.
Rhizosphere communication of plants, parasitic plants and AM fungi.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Sitr0%3D&md5=b4fc668226f0a29d86655acca69c655fCAS |

Bravo A, York T, Pumplin N, Mueller LA, Harrison MJ (2016) Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nature Plants 2, 15208
Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVKis7s%3D&md5=af15ba0068d17943f80199539a8b61c3CAS |

Bythell-Douglas R, Waters MT, Scaffidi A, Flematti GR, Smith SM, Bond CS (2013) The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana. PLoS One 8, e54758
The structure of the karrikin-insensitive protein (KAI2) in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCitbg%3D&md5=996596db1a1a985dfc136464ced6dc00CAS |

Chevalier F, Nieminen K, Sánchez-Ferrero JC, Rodríguez ML, Chagoyen M, Hardtke CS, Cubas P (2014) Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. The Plant Cell 26, 1134–1150.
Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotV2ktLo%3D&md5=5ef5a0047b6303af4325b475b93b8945CAS |

Conn CE, Nelson DC (2015) Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may perceive an unknown signal that is not karrikin or strigolactone. Frontiers in Plant Science 6, 1219
Evidence that KARRIKIN-INSENSITIVE2 (KAI2) Receptors may perceive an unknown signal that is not karrikin or strigolactone.Crossref | GoogleScholarGoogle Scholar |

Conn CE, Bythell-Douglas R, Neumann D, Yoshida S, Whittington B, Westwood JH, Shirasu K, Bond CS, Dyer KA, Nelson DC (2015) Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349, 540–543.
Convergent evolution of strigolactone perception enabled host detection in parasitic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1egur7O&md5=b3b0d159c88867aad45a742bce43aab9CAS |

Daws MI, Davies J, Pritchard HW, Brown NAC, van Staden J (2007) Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regulation 51, 73–82.
Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlslWmuw%3D%3D&md5=9dbc06c36878084130c7e49ba8c51585CAS |

de Saint Germain A, Clavé G, Badet-Denisot M-A, Pillot J-P, Cornu D, Le Caer J-P, Burger M, Pelissier F, Retailleau P, Turnbull C, Bonhomme S, Chory J, Rameau C, Boyer FD (2016) An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nature Chemical Biology 12, 787–794.
An histidine covalent receptor and butenolide complex mediates strigolactone perception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1Kmu73J&md5=908ff08748e95c1faeae82b9875069f5CAS |

Delaux P-M, Xie X, Timme RE, Puech-Pagès V, Dunand C, Lecompte E, Delwiche CF, Yoneyama K, Bécard G, Séjalon-Delmas N (2012) Origin of strigolactones in the green lineage. New Phytologist 195, 857–871.
Origin of strigolactones in the green lineage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFajtLvN&md5=a296f3a61f8b9315c6707079a3233b71CAS |

Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445.
The F-box protein TIR1 is an auxin receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVeisrs%3D&md5=09ea40f988f4566363ce5c0f83a2b8a0CAS |

Drummond RSM, Martínez-Sánchez NM, Janssen BJ, Templeton KR, Simons JL, Quinn BD, Karunairetnam S, Snowden KC (2009) Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiology 151, 1867–1877.
Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOgtrrK&md5=00805dda959dbb2fca4910cc2a63b077CAS |

Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305, 977
A compound from smoke that promotes seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslWqtrs%3D&md5=8e5514473e8727981589bcf07d7c2bc2CAS |

Flematti GR, Goddard-Borger ED, Merritt DJ, Ghisalberti EL, Dixon KW, Trengove RD (2007) Preparation of 2H-furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity. Journal of Agricultural and Food Chemistry 55, 2189–2194.
Preparation of 2H-furo[2,3-c]pyran-2-one derivatives and evaluation of their germination-promoting activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvF2ru70%3D&md5=331fdb130e4a43ceaaa44384badfc555CAS |

Flematti G, Ghisalberti E, Dixon KW, Trengove RD (2008) Germination stimulant in smoke: isolation and identification. ‘Bioactive natural products: detection, isolation, and structural determination’. pp. 531–554. (Taylor & Francis Group: Abingdon, UK)

Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2009) Identification of alkyl substituted 2 H-Furo[2,3- c]pyran-2-ones as germination stimulants present in amoke. Journal of Agricultural and Food Chemistry 57, 9475–9480.
Identification of alkyl substituted 2 H-Furo[2,3- c]pyran-2-ones as germination stimulants present in amoke.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFOqtb%2FI&md5=737f714d46a15e46ae12979bfb1d73b3CAS |

Flematti GR, Merritt DJ, Piggott MJ, Trengove RD, Smith SM, Dixon KW, Ghisalberti EL (2011) Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications 2, 360
Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination.Crossref | GoogleScholarGoogle Scholar |

Flematti GR, Scaffidi A, Waters MT, Smith SM (2016) Stereospecificity in strigolactone biosynthesis and perception. Planta 243, 1361–1373.
Stereospecificity in strigolactone biosynthesis and perception.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xms1OjsL8%3D&md5=694e3a8d7048d372f46a8c436fe525fdCAS |

Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Molecular Plant 6, 76–87.
Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCntbg%3D&md5=42420265724cee406cc1e5ef60a2579fCAS |

Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455, 189–194.
Strigolactone inhibition of shoot branching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2qtLzK&md5=648081257304ee7344e5535e41538f6aCAS |

Guo Y, Zheng Z, La Clair JJ, Chory J, Noel JP (2013) Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 110, 8284–8289.
Smoke-derived karrikin perception by the α/β-hydrolase KAI2 from Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtV2ntLbO&md5=abb030a6101f92e79fc18216317d8907CAS |

Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston MG, Summers W, Carbonnel S, Mansfield C, Yang S-Y, Nadal M, Acosta I, Takano M, Jiao WB, Schneeberger K, Kelly KA, Paszkowski U (2015) Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350, 1521–1524.
Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitVWrtLzF&md5=ffaa1b3bd61b666436b5c10959357619CAS |

Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Current Biology 22, 2032–2036.
DAD2 is an α/β hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSktL7L&md5=2f00ae2815824855956a9008d3afd5bdCAS |

Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant & Cell Physiology 46, 79–86.
Suppression of tiller bud activity in tillering dwarf mutants of rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1eqt7o%3D&md5=7e0acd496d9c8df1b728548b167ef2b9CAS |

Jain N, Kulkarni MG, Van Staden J (2006) A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures during tomato seed germination. Plant Growth Regulation 49, 263–267.
A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures during tomato seed germination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlalsL3M&md5=622ce3365b76b4b3f8dac4aa93739371CAS |

Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504, 401–405.
DWARF 53 acts as a repressor of strigolactone signalling in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOmtrrK&md5=fd87712347d5a0c98cf34c71ff910f69CAS |

Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiology 142, 1014–1026.
Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1ejurfN&md5=3e4f050f838ff909e906eacf2f1d3de9CAS |

Kagiyama M, Hirano Y, Mori T, Kim S-Y, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T (2013) Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes to Cells 18, 147–160.
Structures of D14 and D14L in the strigolactone and karrikin signaling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlajurY%3D&md5=6b6d9076c12c6e4cb77f02095005ae2cCAS |

Kameoka H, Kyozuka J (2015) Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark. Journal of Genetics and Genomics 42, 119–124.
Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark.Crossref | GoogleScholarGoogle Scholar |

Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proceedings of the National Academy of Sciences of the United States of America 105, 7100–7105.
COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmt1Gmurc%3D&md5=d7bd7fcf7c18305fba2a5d2de31d21cbCAS |

Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451.
The Arabidopsis F-box protein TIR1 is an auxin receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVeisro%3D&md5=fd2e188c7b17bd3134b032a2969a86b0CAS |

Khosla A, Nelson DC (2016) Strigolactones, super hormones in the fight against Striga. Current Opinion in Plant Biology 33, 57–63.
Strigolactones, super hormones in the fight against Striga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XpvVWku7g%3D&md5=78f83f0e3dfca221c4cbed3739a76cd8CAS |

Kochanek J, Long RL, Lisle AT, Flematti GR (2016) Karrikins identified in biochars indicate post-fire chemical cues can influence community diversity and plant development. PLoS One 11, e0161234
Karrikins identified in biochars indicate post-fire chemical cues can influence community diversity and plant development.Crossref | GoogleScholarGoogle Scholar |

Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, Haider I, Pozo MJ, de Maagd RA, Ruyter-Spira C, Bouwmeester HJ, López-Ráez JA (2012) The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist
The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis.Crossref | GoogleScholarGoogle Scholar |

Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483, 341–344.
A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlOgurc%3D&md5=225bb21bba86e2322007a325234621e6CAS |

Kulkarni MG, Sparg SG, Light ME (2006) Stimulation of rice (Oryza sativa L.) seedling vigour by smoke‐water and butenolide. Journal of Agronomy 192, 395–398.
Stimulation of rice (Oryza sativa L.) seedling vigour by smoke‐water and butenolide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOrsbzP&md5=1e46c6018be2d045a0cc76c744dac862CAS |

Liang Y, Ward S, Li P, Bennett T, Leyser O (2016) SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms. The Plant Cell 28, 1581–1601.
SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhslCqurnP&md5=b9d84a62f9afb50a392ba5b9a13f8626CAS |

Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230, 649–658.
Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVait7zF&md5=9efbfdaf45ba71556026ce4ca82bb5edCAS |

Long RL, Williams K, Griffiths EM, Flematti GR, Merritt DJ, Stevens JC, Turner SR, Powles SB, Dixon KW (2010) Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid. Annals of Botany 105, 1063–1070.
Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmvVWltLc%3D&md5=09645ac753d7a0ec9e7119a6b516e37fCAS |

Long RL, Stevens JC, Griffiths EM, Adamek M, Gorecki MJ, Powles SB, Merritt DJ (2011) Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide. Annals of Botany 108, 933–944.
Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eisbrL&md5=144d8fd2ca284d0fe580862883d63e9bCAS |

Lopez-Obando M, Conn CE, Hoffmann B, Bythell-Douglas R, Nelson DC, Rameau C, Bonhomme S (2016) Structural modelling and transcriptional responses highlight a clade of PpKAI2-LIKE genes as candidate receptors for strigolactones in Physcomitrella patens. Planta 243, 1441–1453.
Structural modelling and transcriptional responses highlight a clade of PpKAI2-LIKE genes as candidate receptors for strigolactones in Physcomitrella patens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XktlChtL4%3D&md5=1218daa5ec3239c3a84ee81e001c2badCAS |

Mander LN (2003) Twenty years of gibberellin research. Natural Product Reports 20, 49–69.
Twenty years of gibberellin research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisVKls70%3D&md5=245c76e33f5e113c32c6a6ed20dd1973CAS |

Matusova R, Rani K, Verstappen F, Franssen M, Beale M, Bouwmeester H (2005) The strigolactone germination stimulants of the plant–parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiology 139, 920
The strigolactone germination stimulants of the plant–parasitic Striga and Orobanche spp. are derived from the carotenoid pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCgsb%2FI&md5=08c70895c57e5d8ef40e5f40af304559CAS |

Mayzlish-Gati E, De Cuyper C, Goormachtig S, Beeckman T, Vuylsteke M, Brewer PB, Beveridge CA, Yermiyahu U, Kaplan Y, Enzer Y, Wininger S, Resnick N, Cohen M, Kapulnik Y, Koltai H (2012) Strigolactones are involved in root response to low phosphate conditions in Arabidopsis. Plant Physiology 160, 1329–1341.
Strigolactones are involved in root response to low phosphate conditions in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12kurvO&md5=3f22fba3e9464fedbaba178425b70234CAS |

McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun T-P, Steber CM (2003) The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. The Plant Cell 15, 1120–1130.
The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjvV2htLY%3D&md5=4e50950476b2ad4ded1158fcf5fc329fCAS |

Nakamura H, Xue Y-L, Miyakawa T, Hou F, Qin H-M, Fukui K, Shi X, Ito E, Ito S, Park S-H, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T (2013) Molecular mechanism of strigolactone perception by DWARF14. Nature Communications 4, 2613
Molecular mechanism of strigolactone perception by DWARF14.Crossref | GoogleScholarGoogle Scholar |

Napoli C (1996) Highly branched phenotype of the Petunia dad1-1 mutant is reversed by grafting. Plant Physiology 111, 27–37.
Highly branched phenotype of the Petunia dad1-1 mutant is reversed by grafting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivFektLw%3D&md5=d4bd36e68d3f6238ea7942bcdb246412CAS |

Nelson DC, Riseborough J-A, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM (2009) Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. Plant Physiology 149, 863–873.
Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1Wqu7s%3D&md5=877dd3742b604f1aa387ce88c9328391CAS |

Nelson DC, Flematti GR, Riseborough J-A, Ghisalberti EL, Dixon KW, Smith SM (2010) Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 107, 7095–7100.
Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFSjtbo%3D&md5=4a3776a7a100d5d2077386faf4be8b6fCAS |

Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR, Dixon KW, Beveridge CA, Ghisalberti EL, Smith SM (2011) F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 108, 8897–8902.
F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVektLg%3D&md5=a35324635e5f7bb9cc1c9c74f806826eCAS |

Nelson DC, Flematti GR, Ghisalberti EL, Dixon KW, Smith SM (2012) Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology 63, 107–130.
Regulation of seed germination and seedling growth by chemical signals from burning vegetation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xos1amsrc%3D&md5=ceac557740bf1a886f87e9d4fb939d0cCAS |

Parker C (2009) Observations on the current status of Orobanche and Striga problems worldwide. Pest Management Science 65, 453–459.
Observations on the current status of Orobanche and Striga problems worldwide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFymurw%3D&md5=332c439ddf6cb3310571b38526a959a1CAS |

Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59, 593–601.
A burning story: the role of fire in the history of life.Crossref | GoogleScholarGoogle Scholar |

Rasmussen A, Beveridge CA, Geelen D (2012) Inhibition of strigolactones promotes adventitious root formation. Plant Signaling & Behavior 7, 694–697.
Inhibition of strigolactones promotes adventitious root formation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSktrzI&md5=ebb772e71cd1cbf67df1fa40d8acad9cCAS |

Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011) Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiology 155, 721–734.
Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXksFOjsLk%3D&md5=3971d3f129bc1ad3775d0247ab8760fcCAS |

Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends in Plant Science 18, 72–83.
The biology of strigolactones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslSmtLjK&md5=ea27aff18dc569c3eb9ef105c311eeecCAS |

Scaffidi A, Waters MT, Bond CS, Dixon KW, Smith SM, Ghisalberti EL, Flematti GR (2012) Exploring the molecular mechanism of karrikins and strigolactones. Bioorganic & Medicinal Chemistry 22, 3743–3746.
Exploring the molecular mechanism of karrikins and strigolactones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtlWlsrk%3D&md5=52bc29447aa0c4a1e405b986cd79998fCAS |

Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiology 165, 1221–1232.
Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOqsbvE&md5=596b31d47058dd5f0f4d91778aded561CAS |

Scott AC, Glasspool IJ (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences of the United States of America 103, 10861–10865.
The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFegu7g%3D&md5=ad0e5f38fbe05b1f067ad62010cfcef6CAS |

Snowden KC, Simkin AJ, Janssen BJ, Templeton KR, Loucas HM, Simons JL, Karunairetnam S, Gleave AP, Clark DG, Klee HJ (2005) The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. The Plant Cell 17, 746–759.
The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1ygtr0%3D&md5=938291f842afce3fa07ccb8ee0d20d9fCAS |

Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes & Development 17, 1469–1474.
MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFSisrk%3D&md5=9f4d6d4647f40f267f53979467c7d699CAS |

Soundappan I, Bennett T, Morffy N, Liang Y, Stanga JP, Abbas A, Leyser O, Nelson DC (2015) SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis. The Plant Cell 27, 3143–3159.
SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVantrrO&md5=5a82b76f8425f518f561964dc6dcdff7CAS |

Stanga JP, Smith SM, Briggs WR, Nelson DC (2013) SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. Plant Physiology 163, 318–330.
SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVygsbnO&md5=a59e33569ece7d38dec1ed3c65689d1eCAS |

Stanga JP, Morffy N, Nelson DC (2016) Functional redundancy in the control of seedling growth by the karrikin signaling pathway. Planta 243, 1397–1406.
Functional redundancy in the control of seedling growth by the karrikin signaling pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xmslymuw%3D%3D&md5=55501e99108cff689abbc61b20d97a3aCAS |

Stevens J, Merritt D, Flematti G, Ghisalberti E, Dixon K (2007) Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions. Plant and Soil 298, 113–124.
Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3-c]pyran-2-one under laboratory and field conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVejtr3L&md5=2d15341f643fe65443bc79b4bdd23d3fCAS |

Stirnberg P, van De Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129, 1131–1141.

Stirnberg P, Zhao S, Williamson L, Ward S, Leyser O (2012) FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner. The Plant Journal 71, 907–920.
FHY3 promotes shoot branching and stress tolerance in Arabidopsis in an AXR1-dependent manner.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlSmt77J&md5=5fc1ab034905bbcf7e0298e8b24451d6CAS |

Sun X-D, Ni M (2011) HYPOSENSITIVE TO LIGHT, an α/β fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation. Molecular Plant 4, 116–126.
HYPOSENSITIVE TO LIGHT, an α/β fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlemu74%3D&md5=388556ec36e520fe079a8d1faf318c03CAS |

Sun YK, Flematti GR, Smith SM, Waters MT (2016) Reporter gene-facilitated detection of compounds in Arabidopsis leaf extracts that activate the karrikin signaling pathway. Frontiers in Plant Science 7, 1799
Reporter gene-facilitated detection of compounds in Arabidopsis leaf extracts that activate the karrikin signaling pathway.Crossref | GoogleScholarGoogle Scholar |

Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S, Tsuchiya Y, Savchenko A, McCourt P (2015) Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350, 203–207.
Structure-function analysis identifies highly sensitive strigolactone receptors in Striga.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1antLnI&md5=13c533338278db3cae5802e6f51c1fc3CAS |

Tsuchiya Y, Yoshimura M, Sato Y, Kuwata K, Toh S, Holbrook-Smith D, Zhang H, McCourt P, Itami K, Kinoshita T, Hagihara S (2015) Probing strigolactone receptors in Striga hermonthica with fluorescence. Science 349, 864–868.
Probing strigolactone receptors in Striga hermonthica with fluorescence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtlKlt7%2FP&md5=d6c75ac46ca44339e825db0c4eeeb062CAS |

Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T-Y, Hsing Y-IC, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698.
GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVCjsL%2FP&md5=7ef1ed8c628cd797211e0aa5d67fce2eCAS |

Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200.
Inhibition of shoot branching by new terpenoid plant hormones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2qtLnE&md5=aa33e00ac2d0ef479b6f245c18394ddaCAS |

van der Schaar W, Alonso-Blanco C, Léon-Kloosterziel KM, Jansen RC, van Ooijen JW, Koornneef M (1997) QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79, 190–200.
QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping.Crossref | GoogleScholarGoogle Scholar |

van Staden J, van Staden J, Drewes FE, Drewes FE, Brown NAC, Brown NAC (1995) Some chromatographic characteristics of germination stimulants in plant-derived smoke extracts. Plant Growth Regulation 17, 241–249.
Some chromatographic characteristics of germination stimulants in plant-derived smoke extracts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpvVOjtr0%3D&md5=6fe12cbb3d7eda66394bbe7dd4fa05b1CAS |

Van Staden J, Brown NAC, Jger AK, Johnson TA (2000) Smoke as a germination cue. Plant Species Biology 15, 167–178.
Smoke as a germination cue.Crossref | GoogleScholarGoogle Scholar |

van Staden J, Jager AK, Light ME, Burger BV (2004) Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany 70, 654–659.
Isolation of the major germination cue from plant-derived smoke.Crossref | GoogleScholarGoogle Scholar |

van Staden J, Sparg S, Kulkarni M, Light M (2006) Post-germination effects of the smoke-derived compound 3-methyl-2H-furo [2, 3-c] pyran-2-one, and its potential as a preconditioning agent. Field Crops Research 98, 98–105.
Post-germination effects of the smoke-derived compound 3-methyl-2H-furo [2, 3-c] pyran-2-one, and its potential as a preconditioning agent.Crossref | GoogleScholarGoogle Scholar |

Wang L, Wang B, Jiang L, Liu X, Li X, Lu Z, Meng X, Wang Y, Smith SM, Li J (2015) Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation. The Plant Cell 27, 3128–3142.
Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-Like SMXL repressor proteins for ubiquitination and degradation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XnsFKntbg%3D&md5=125e026c091c14f3f3de49d193f6786aCAS |

Waters MT, Smith SM (2013) KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Molecular Plant 6, 63–75.
KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFCnurc%3D&md5=8397b17016cfca77a4e1727de33146beCAS |

Waters MT, Smith SM, Nelson DC (2011) Smoke signals and seed dormancy: where next for MAX2? Plant Signaling & Behavior 6, 1418–1422.
Smoke signals and seed dormancy: where next for MAX2?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtlOgsL8%3D&md5=ad4665d2f162bd1c4427f07ee24690b3CAS |

Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK, Dixon KW, Smith SM (2012a) Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development 139, 1285–1295.
Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFyqt7k%3D&md5=5ffec61ce46de74d54f93195b393ed3fCAS |

Waters MT, Scaffidi A, Flematti GR, Smith SM (2012b) Karrikins force a rethink of strigolactone mode of action. Plant Signaling & Behavior 7, 969–972.
Karrikins force a rethink of strigolactone mode of action.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGgtLs%3D&md5=7b19e9f8dfec477293b744307a936d74CAS |

Waters MT, Scaffidi A, Flematti GR, Smith SM (2013) The origins and mechanisms of karrikin signalling. Current Opinion in Plant Biology 16, 667–673.
The origins and mechanisms of karrikin signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht12isrbN&md5=885800159b14127d3882a9b2e2598525CAS |

Waters MT, Scaffidi A, Sun YK, Flematti GR, Smith SM (2014) The karrikin response system of Arabidopsis. The Plant Journal 79, 623–631.
The karrikin response system of Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaktb3O&md5=030b387c60ecc08e1d8497d46abc5232CAS |

Waters MT, Scaffidi A, Flematti G, Smith SM (2015a) Substrate-induced degradation of the α/β-fold hydrolase KARRIKIN INSENSITIVE2 requires a functional catalytic triad but is independent of MAX2. Molecular Plant 8, 814–817.
Substrate-induced degradation of the α/β-fold hydrolase KARRIKIN INSENSITIVE2 requires a functional catalytic triad but is independent of MAX2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpsFeks7o%3D&md5=045723798f427375c6875fbe0d5ce54bCAS |

Waters MT, Scaffidi A, Moulin SLY, Sun YK, Flematti GR, Smith SM (2015b) A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones. The Plant Cell 27, 1925–1944.
A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVOhsbfF&md5=d39c47b98eb48fe802b6a61835eefd67CAS |

Waters MT, Gutjahr C, Bennett T, Nelson DC (2017) Strigolactone signaling and evolution. Annual Review of Plant Biology
Strigolactone signaling and evolution.Crossref | GoogleScholarGoogle Scholar |

Xu G, Ma H, Nei M, Kong H (2009) Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proceedings of the National Academy of Sciences of the United States of America 106, 835–840.
Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht12isbg%3D&md5=403f55eb8fa7de364c5e3522e24d75d0CAS |

Xu Y, Miyakawa T, Nakamura H, Nakamura A, Imamura Y, Asami T, Tanokura M (2016) Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica. Scientific Reports 6, 31386
Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlCitrnP&md5=9942d3dfc25c7c5c48aea6f85c845bb3CAS |

Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta
Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency.Crossref | GoogleScholarGoogle Scholar |

Yao R, Ming Z, Yan L, Li S, Wang F, Ma S, Yu C, Yang M, Chen L, Chen L, et al (2016) DWARF14 is a non-canonical hormone receptor for strigolactone. Nature 536, 469–473.
DWARF14 is a non-canonical hormone receptor for strigolactone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xht1GrurfM&md5=13f1d37ef182e3c89bc36950c7e72e1fCAS |

Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytologist 196, 1208–1216.
The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1WjurzP&md5=da301a5d6697ed855fbf5a7df1d10ca0CAS |

Zhao L-H, Zhou XE, Wu Z-S, Yi W, Xu Y, Li S, Xu T-H, Liu Y, Chen R-Z, Kovach A, Kang Y, et al (2013) Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Research 23, 436–439.
Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjsFaqtbg%3D&md5=09ad0f09a789851128c3c67302c6abd3CAS |

Zhao L-H, Zhou XE, Yi W, Wu Z, Liu Y, Kang Y, Hou L, de Waal PW, Li S, Jiang Y, et al (2015) Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3. Cell Research 25, 1219–1236.
Destabilization of strigolactone receptor DWARF14 by binding of ligand and E3-ligase signaling effector DWARF3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhslWlurfJ&md5=0d6408aee1bc3728046af7c29209e572CAS |

Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, et al (2013) D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature 504, 406–410.
D14-SCFD3-dependent degradation of D53 regulates strigolactone signalling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFOls7nL&md5=be03aa9868f178e8663664de3d36bfadCAS |

Zhou J, da Silva J, Ma G (2014) Effects of smoke water and karrikin on seed germination of 13 species growing in China. Central European Journal of Biology 9, 1108–1116.
Effects of smoke water and karrikin on seed germination of 13 species growing in China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsValtLbE&md5=a7eadd6d4a4740922a7b03a3ce87aec9CAS |