Cell differentiation in nitrogen-fixing nodules hosting symbiosomes
Anna V. Tsyganova A , Anna B. Kitaeva A and Viktor E. Tsyganov A BA All-Russia Research Institute for Agricultural Microbiology, Laboratory of Molecular and Cellular Biology, Podbelsky chaussee 3, 196608, Pushkin 8, Saint-Petersburg, Russia.
B Corresponding author. Email: tsyganov@arriam.spb.ru
This paper originates from a presentation at the Fourth International Symposium on Plant Signaling and Behavior, Komarov Botanical Institute RAS/Russian Science Foundation, Saint Petersburg, Russia, 19–23 June 2016.
Functional Plant Biology 45(2) 47-57 https://doi.org/10.1071/FP16377
Submitted: 29 October 2016 Accepted: 25 January 2017 Published: 7 March 2017
Abstract
The nitrogen-fixing nodule is a unique ecological niche for rhizobia, where microaerobic conditions support functioning of the main enzyme of nitrogen fixation, nitrogenase, which is highly sensitive to oxygen. To accommodate bacteria in a symbiotic nodule, the specialised infected cells increase in size owing to endoreduplication and are able to shelter thousands of bacteria. Bacteria are isolated from the cytoplasm of the plant cell by a membrane-bound organelle-like structure termed the symbiosome. It is enclosed by a symbiosome membrane, mainly of plant origin but with some inclusion of bacterial proteins. Within the symbiosome, bacterial cells differentiate into bacteroids a form that is specialised for nitrogen fixation. In this review, we briefly summarise recent advances in studies of differentiation both of symbiosomes and of the infected cells that accommodate them. We will consider the role of CCS52A, DNA topoisomerase VI, tubulin cytoskeleton rearrangements in differentiation of infected cells, the fate of the vacuole, and the distribution of symbiosomes in the infected cells. We will also consider differentiation of symbiosomes, paying attention to the role of NCR peptides, vesicular transport to symbiosomes, and mutant analysis of symbiosome development in model and crop legumes. Finally, we conclude that mechanisms involved in redistribution organelles, including the symbiosomes, clearly merit much more attention.
Additional keywords: cytoskeleton, nodulation, organelles, plant–microbe interactions, Rhizobium spp., symbiosis.
References
Alunni B, Gourion B (2016) Terminal bacteroid differentiation in the legume−rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond. New Phytologist 211, 411–417.| Terminal bacteroid differentiation in the legume−rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtVSiurjF&md5=bd41911e8fee71c6f935130c11f7102eCAS |
Berrabah F, Bourcy M, Eschstruth A, Cayrel A, Guefrachi I, Mergaert P, Wen J, Jean V, Mysore KS, Gourion B, Ratet P (2014) A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis. New Phytologist 203, 1305–1314.
| A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1Kmt77F&md5=e5708b5b1a56ff2d30556c8166a67992CAS |
Borisov AY, Rozov SM, Tsyganov VE, Kulikova OA, Kolycheva AN, Yakobi LM, Ovtsyna AO, Tikhonovich IA (1994) Identification of symbiotic genes in pea (Pisum sativum L.) by means of experimental mutagenesis. Russian Journal of Genetics 30, 1284–1292.
Borisov AY, Rozov SM, Tsyganov VE, Morzhina EV, Lebsky VK, Tikhonovich IA (1997) Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.). Molecular & General Genetics 254, 592–598.
| Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvFWisbg%3D&md5=c393b10d5917e9b6a138c1e977503ba1CAS |
Borisov AY, Danilova TN, Koroleva TA, Naumkina TS, Pavlova ZB, Pinaev AG, Shtark OY, Tsyganov VE, Voroshilova VA, Zhernakov AI, Zhukov VA, Tikhonovich IA (2004) Pea (Pisum sativum L.) regulatory genes controlling development of nitrogen-fixing nodule and arbuscular mycorrhiza: fundamentals and application. Biologia 59, 137–144.
Bourcy M, Brocard L, Pislariu CI, Cosson V, Mergaert P, Tadege M, Mysore KS, Udvardi MK, Gourion B, Ratet P (2013) Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions. New Phytologist 197, 1250–1261.
| Medicago truncatula DNF2 is a PI-PLC-XD-containing protein required for bacteroid persistence and prevention of nodule early senescence and defense-like reactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitVOjurk%3D&md5=d28beead900e487ce84f52f0b7d60553CAS |
Brewin NJ (2004) Plant cell wall remodelling in the Rhizobium–legume symbiosis. Critical Reviews in Plant Sciences 23, 293–316.
| Plant cell wall remodelling in the Rhizobium–legume symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlOgtLo%3D&md5=ab963b3dc889be49db25059712d52b96CAS |
Brewin N, Wood EA, Bradley DJ, Harding SC, Sindhu SS, Kannenberg EL, VandenBosch KA (1988) The use of monoclonal antibodies to study plant-microbe interactions in the pea nodule. In ‘Nitrogen fixation: hundred years after’. (Eds H Bothe, FJ de Bruijn FJ, WE Newton) pp. 517–525. (Gustav Fischer Verlag: Stuttgart, Germany)
Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews. Microbiology 3, 238–250.
| Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhslGjtbo%3D&md5=0749744ddc7c30169670330d34f754cbCAS |
Catalano CM, Lane WS, Sherrier DJ (2004) Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules. Electrophoresis 25, 519–531.
| Biochemical characterization of symbiosome membrane proteins from Medicago truncatula root nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFaqs7w%3D&md5=43228d194de1dbbf916a222a0c826768CAS |
Catalano CM, Czymmek KJ, Gann JG, Sherrier DJ (2007) Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules. Planta 225, 541–550.
| Medicago truncatula syntaxin SYP132 defines the symbiosome membrane and infection droplet membrane in root nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yhtrs%3D&md5=7fe4a9b35bafc4469f5588d9773ee52eCAS |
Cebolla A, Vinardell JM, Kiss E, Oláh B, Roudier F, Kondorosi A, Kondorosi E (1999) The mitotic inhibitor ccs52 is required for endoreduplication and ploidy‐dependent cell enlargement in plants. EMBO Journal 18, 4476–4484.
| The mitotic inhibitor ccs52 is required for endoreduplication and ploidy‐dependent cell enlargement in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlslWnsrw%3D&md5=dcfb6634afbb26cf55576f389a09966eCAS |
Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Advances in Botanical Research 41, 1–62.
| Multiple responses of rhizobia to flavonoids during legume root infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivVClsrs%3D&md5=b2a77ca05cf179e3fc87ca08a62eca27CAS |
Czernic P, Gully D, Cartieaux F, Moulin L, Guefrachi I, Patrel D, Pierre O, Fardoux J, Chaintreuil C, Nguyen P, Gressent F, Da Silva C, Poulain J, Wincker P, Rofidal V, Hem S, Barrière Q, Arrighi JF, Mergaert P, Giraud E (2015) Convergent evolution of endosymbiont differentiation in Dalbergioid and IRLC legumes mediated by nodule-specific cysteine-rich peptides. Plant Physiology 169, 1254–1265.
| Convergent evolution of endosymbiont differentiation in Dalbergioid and IRLC legumes mediated by nodule-specific cysteine-rich peptides.Crossref | GoogleScholarGoogle Scholar |
Emerich DW, Krishnan HB (2014) Symbiosomes: temporary moonlighting organelles. The Biochemical Journal 460, 1–11.
| Symbiosomes: temporary moonlighting organelles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCjtLs%3D&md5=3a592d926411e9ade54659622803babfCAS |
Farkas A, Maróti G, Dürgő H, Györgypál Z, Lima RM, Medzihradszky KF, Kereszt A, Mergaert P, Kondorosi É (2014) Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proceedings of the National Academy of Sciences of the United States of America 111, 5183–5188.
| Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXkslGisr8%3D&md5=81888b0f6c761eec4f427580cfea5a92CAS |
Fournier J, Teillet A, Chabaud M, Ivanov S, Genre A, Limpens E, de Carvalho-Niebel F, Barker DG (2015) Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. Plant Physiology 167, 1233–1242.
| Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXlvVKks7s%3D&md5=839a270892d285d74da286ca2b7989e6CAS |
Gavrin A, Kaiser BN, Geiger D, Tyerman SD, Wen Z, Bisseling T, Fedorova EE (2014) Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago. The Plant Cell 26, 3809–3822.
| Adjustment of host cells for accommodation of symbiotic bacteria: vacuole defunctionalization, HOPS suppression, and TIP1g retargeting in Medicago.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFGhsL3J&md5=c42bf8f70a06b03ca37a99057632bd2cCAS |
Gavrin A, Jansen V, Ivanov S, Bisseling T, Fedorova E (2015) ARP2/3-mediated actin nucleation associated with symbiosome membrane is essential for the development of symbiosomes in infected cells of Medicago truncatula root nodules. Molecular Plant-Microbe Interactions 28, 605–614.
| ARP2/3-mediated actin nucleation associated with symbiosome membrane is essential for the development of symbiosomes in infected cells of Medicago truncatula root nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXpvFGnsbw%3D&md5=27bfa311a67299adbc1dc380d3b4f0f6CAS |
Godiard L, Lepage A, Moreau S, Laporte D, Verdenaud M, Timmers T, Gamas P (2011) MtbHLH1, a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges. New Phytologist 191, 391–404.
| MtbHLH1, a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFSqtr%2FJ&md5=a168c778ff00628431f9e8397698448cCAS |
Griffis AHN, Groves NR, Zhou X, Meier I (2014) Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease. Frontiers in Plant Science 5, 129
| Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease.Crossref | GoogleScholarGoogle Scholar |
Guefrachi I, Nagymihaly M, Pislariu CI, Van de Velde W, Ratet P, Mars M, Udvardi MK, Kondorosi E, Mergaert P, Alunni B (2014) Extreme specificity of NCR gene expression in Medicago truncatula. BMC Genomics 15, 712
| Extreme specificity of NCR gene expression in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar |
Guefrachi I, Pierre O, Timchenko T, Alunni B, Barrière Q, Czernic P, Villaécija-Aguilar JA, Verly C, Bourge M, Fardoux J, Mars M, Kondorosi E, Giraud E, Mergaert P (2015) Bradyrhizobium BclA is a peptide transporter required for bacterial differentiation in symbiosis with Aeschynomene legumes. Molecular Plant-Microbe Interactions 28, 1155–1166.
Guinel FC (2009) Getting around the legume nodule: I. The structure of the peripheral zone in four nodule types. Botany 87, 1117–1138.
| Getting around the legume nodule: I. The structure of the peripheral zone in four nodule types.Crossref | GoogleScholarGoogle Scholar |
Hakoyama T, Oi R, Hazuma K, Suga E, Adachi Y, Kobayashi M, Akai R, Sato S, Fukai E, Tabata S, Shibata S, Wu GJ, Hase Y, Tanaka A, Kawaguchi M, Kouchi H, Umehara Y, Suganuma N (2012a) The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in Lotus japonicus nodules. Plant Physiology 160, 897–905.
| The SNARE protein SYP71 expressed in vascular tissues is involved in symbiotic nitrogen fixation in Lotus japonicus nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFaksbbI&md5=396f189832c3b90b6f110ad1978d524fCAS |
Hakoyama T, Niimi K, Yamamoto T, Isobe S, Sato S, Nakamura Y, Tabata S, Kumagai H, Umehara Y, Brossuleit K (2012b) The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Plant & Cell Physiology 53, 225–236.
| The integral membrane protein SEN1 is required for symbiotic nitrogen fixation in Lotus japonicus nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFGnsg%3D%3D&md5=68954b60bad75a9aad260001ef13614eCAS |
Heidstra R, Geurts R, Franssen H, Spaink HP, Van Kammen AB, Bisseling T (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiology 105, 787–797.
| Root hair deformation activity of nodulation factors and their fate on Vicia sativa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXkslymsL0%3D&md5=c1db0e99ebe3f9b0068c1d1f1e1df10eCAS |
Horváth B, Domonkos Á, Kereszt A, Szűcs A, Ábrahám E, Ayaydin F, Bóka K, Chen Y, Chen R, Murray JD, Udvardi MK, Kondorosi É, Kaló P (2015) Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant. Proceedings of the National Academy of Sciences of the United States of America 112, 15232–15237.
| Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant.Crossref | GoogleScholarGoogle Scholar |
Ishihara H, Koriyama H, Osawa A, Zehirov G, Yamaura M, Kucho KI, Abe M, Higashi S, Kondorosi E, Mergaert P, Uchiumi T (2011) Characteristics of bacteroids in indeterminate nodules of the leguminous tree Leucaena glauca. Microbes and Environments 26, 156–159.
| Characteristics of bacteroids in indeterminate nodules of the leguminous tree Leucaena glauca.Crossref | GoogleScholarGoogle Scholar |
Ivanov S, Fedorova E, Bisseling T (2010) Intracellular plant microbe associations: secretory pathways and the formation of perimicrobial compartments. Current Opinion in Plant Biology 13, 372–377.
| Intracellular plant microbe associations: secretory pathways and the formation of perimicrobial compartments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1Kqu7k%3D&md5=e99d32a35672f4f62c83a53d778dfa42CAS |
Ivanova KA, Tsyganova AV, Brewin NJ, Tikhonovich IA, Tsyganov VE (2015) Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Protoplasma 252, 1505–1517.
| Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXkt1OgsLw%3D&md5=a56bbf8a5e724785cf312096dc4db2a5CAS |
Jin Y, Liu H, Luo D, Yu N, Dong W, Wang C, Zhang X, Dai H, Yang J, Wang E (2016) DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways. Nature Communications 7, 12433
| DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtlaksbjL&md5=859aaa96bb10185105ded53311fefab0CAS |
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nature Reviews. Microbiology 5, 619–633.
| How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns12htbc%3D&md5=d86c647be0f18e3d34632534d106d401CAS |
Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszyński A, Carlson RW, Thygesen MB, Sandal N, Asmussen MH, Vinther M, Andersen SU, Krusell L, Thirup S, Jensen KJ, Ronson CW, Blaise M, Radutoiu S, Stougaard J (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523, 308–312.
| Receptor-mediated exopolysaccharide perception controls bacterial infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFyks7nN&md5=0fd46c33a047e78ec40606b49b5e4e9cCAS |
Kereszt A, Mergaert P, Maróti G, Kondorosi É (2011) Innate immunity effectors and virulence factors in symbiosis. Current Opinion in Microbiology 14, 76–81.
| Innate immunity effectors and virulence factors in symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvV2qt7s%3D&md5=d31688b6f532ea48df727b9c11a5421cCAS |
Kim M, Chen Y, Xi J, Waters C, Chen R, Wang D (2015) An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis. Proceedings of the National Academy of Sciences of the United States of America 112, 15238–15243.
| An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFWqs7%2FN&md5=2cb632a66db905ce29ce7ae7c13f42eaCAS |
Kitaeva AB, Demchenko KN, Tikhonovich IA, Timmers AC, Tsyganov VE (2016) Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. New Phytologist 210, 168–183.
| Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XjsFKku7Y%3D&md5=3203aaf78f32d94b9c6320021bd9de3bCAS |
Kondorosi E, Kondorosi A (2004) Endoreduplication and activation of the anaphase‐promoting complex during symbiotic cell development. FEBS Letters 567, 152–157.
| Endoreduplication and activation of the anaphase‐promoting complex during symbiotic cell development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVGhtLs%3D&md5=f8174e2b8d15334b1c0edce2791d8e7bCAS |
Krusell L, Krause K, Ott T, Desbrosses G, Krämer U, Sato S (2005) The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules. The Plant Cell 17, 1625–1636.
| The sulfate transporter SST1 is crucial for symbiotic nitrogen fixation in Lotus japonicus root nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVKksLs%3D&md5=8b4ded58720019d28cd4e839eddb744fCAS |
Kumagai H, Hakoyama T, Umehara Y, Sato S, Kaneko T, Tabata S, Kouchi H (2007) A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Plant Physiology 143, 1293–1305.
| A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVyqsb8%3D&md5=6df070bd2e98dc261c96b970f294b714CAS |
Limpens E, Ivanov S, van Esse W, Voets G, Fedorova E, Bisseling T (2009) Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity. The Plant Cell 21, 2811–2828.
| Medicago N2-fixing symbiosomes acquire the endocytic identity marker Rab7 but delay the acquisition of vacuolar identity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVejur7O&md5=55d2b64597dc71844bfc4eb37696d02bCAS |
Maróti G, Kondorosi É (2014) Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Frontiers in Microbiology 5, 326
Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiology 132, 161–173.
| A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVGgs7c%3D&md5=7470273abe0af0d0c3d6c313bcc09e7fCAS |
Mergaert P, Uchiumi T, Alunni B, Evanno G, Cheron A, Catrice O, Mausset AE, Barloy-Hubler F, Galibert F, Kondorosi A, Kondorosi E (2006) Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis. Proceedings of the National Academy of Sciences of the United States of America 103, 5230–5235.
| Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVGltLo%3D&md5=4c7252008f5b1bf8ca1132518d60dcadCAS |
Morzhina EV, Tsyganov VE, Borisov AY, Lebsky VK, Tikhonovich IA (2000) Four developmental stages identified by genetic dissection of pea (Pisum sativum L.) root nodule morphogenesis. Plant Science 155, 75–83.
| Four developmental stages identified by genetic dissection of pea (Pisum sativum L.) root nodule morphogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisFGmsrk%3D&md5=d9a6ac769000fcc8f1087fb135b3289dCAS |
Nemankin NF (2011) Analysis of pea (Pisum sativum L.) genetic system, controlling development of arbuscular mycorrhiza and nitrogen-fixing symbiosis. PhD thesis. Saint-Petersburg State University. [in Russian]
Newcomb W (1976) A correlated light and electron microscopic study of symbiotic growth and differentiation in Pisum sativum root nodules. Canadian Journal of Botany 54, 2163–2186.
| A correlated light and electron microscopic study of symbiotic growth and differentiation in Pisum sativum root nodules.Crossref | GoogleScholarGoogle Scholar |
Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews. Microbiology 11, 252–263.
| Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVKjtLc%3D&md5=4e1f16153be8b5d924afebfdca812940CAS |
Pan H, Oztas O, Zhang X, Wu X, Stonoha C, Wang E, Wang B, Wang D (2016) A symbiotic SNARE protein generated by alternative termination of transcription. Nature Plants 2, 15197
| A symbiotic SNARE protein generated by alternative termination of transcription.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xns1Wmuw%3D%3D&md5=5113ed864ec0663f5104e6e632fa370dCAS |
Peiter E, Schubert S (2003) Sugar uptake and proton release by protoplasts from the infected zone of Vicia faba L. nodules: evidence against apoplastic sugar supply of infected cells. Journal of Experimental Botany 54, 1691–1700.
| Sugar uptake and proton release by protoplasts from the infected zone of Vicia faba L. nodules: evidence against apoplastic sugar supply of infected cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVSmsbw%3D&md5=f95feb41d45cd891c53b7286a584ab1cCAS |
Penterman J, Abo RP, De Nisco NJ, Arnold MFF, Longhi R, Zanda M, Walker GC (2014) Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis. Proceedings of the National Academy of Sciences of the United States of America 111, 3561–3566.
| Host plant peptides elicit a transcriptional response to control the Sinorhizobium meliloti cell cycle during symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjtl2gsbg%3D&md5=dbb3f450249602957e255ad7ae4063ccCAS |
Prell J, Poole P (2006) Metabolic changes of rhizobia in legume nodules. Trends in Microbiology 14, 161–168.
| Metabolic changes of rhizobia in legume nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1Gltrg%3D&md5=574b049f5a76576a8cc0604a3e0d04cbCAS |
Price PA, Tanner HR, Dillon BA, Shabab M, Walker GC, Griffitts JS (2015) Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility. Proceedings of the National Academy of Sciences of the United States of America 112, 15244–15249.
| Rhizobial peptidase HrrP cleaves host-encoded signaling peptides and mediates symbiotic compatibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFCisb3F&md5=fb6d96b7af816cf24e42d3abd716967dCAS |
Provorov NA (2005) Molecular basis of symbiogenic evolution: from free-living bacteria towards organelles. Zhurnal Obshchei Biologii 66, 371–388.
Roth LE, Stacey G (1989) Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane comes from three sources. European Journal of Cell Biology 49, 13–23.
Sanderfoot AA, Raikhel NV (1999) The specificity of vesicle trafficking: coat proteins and SNAREs. The Plant Cell 11, 629–641.
| The specificity of vesicle trafficking: coat proteins and SNAREs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtFSrur0%3D&md5=6f7cf17e775b1a9213a00aabe07114d3CAS |
Serova TA, Tsyganov VE (2014) Symbiotic nodule senescence in legumes: molecular-genetic and cellular aspects. Sel’skokhozyaistvennaya Biologiya 5, 3–15.
| Symbiotic nodule senescence in legumes: molecular-genetic and cellular aspects.Crossref | GoogleScholarGoogle Scholar |
Sieberer B, Emons AMC (2000) Cytoarchitecture and pattern of cytoplasmic streaming in root hairs of Medicago truncatula during development and deformation by nodulation factors. Protoplasma 214, 118–127.
| Cytoarchitecture and pattern of cytoplasmic streaming in root hairs of Medicago truncatula during development and deformation by nodulation factors.Crossref | GoogleScholarGoogle Scholar |
Singh S, Katzer K, Lambert J, Cerri M, Parniske M (2014) CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host & Microbe 15, 139–152.
| CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFCjtLo%3D&md5=dbb649fb15338b00d44a55063f50f849CAS |
Sinharoy S, Torres-Jerez I, Bandyopadhyay K, Kereszt A, Pislariu CI, Nakashima J, Benedito VA, Kondorosi E, Udvardi MK (2013) The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula. The Plant Cell 25, 3584–3601.
| The C2H2 transcription factor regulator of symbiosome differentiation represses transcription of the secretory pathway gene VAMP721a and promotes symbiosome development in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslOktrfE&md5=55d9552613b8ea66cdeb8fdad2635b01CAS |
Smith PMC, Atkins CA (2002) Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiology 128, 793–802.
| Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1Gqtr8%3D&md5=370864b0ba0129661a0163bae5da2717CAS |
Suzaki T, Ito M, Yoro E, Sato S, Hirakawa H, Takeda N, Kawaguchi M (2014) Endoreduplication-mediated initiation of symbiotic organ development in Lotus japonicus. Development 141, 2441–2445.
| Endoreduplication-mediated initiation of symbiotic organ development in Lotus japonicus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1WkurrE&md5=b86de9dee3a13c9d6580d5e161a922e4CAS |
Timmers ACJ (2008) The role of the plant cytoskeleton in the interaction between legumes and rhizobia. Journal of Microscopy 231, 247–256.
| The role of the plant cytoskeleton in the interaction between legumes and rhizobia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2lt7fO&md5=4078ad437ff828f4db5fdc1c67f7926fCAS |
Timmers ACJ, Auriac M-C, Truchet G (1999) Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development 126, 3617–3628.
Tsyganov VE, Morzhina EV, Stefanov SY, Borisov AY, Lebsky VK, Tikhonovich IA (1998) The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function. Molecular & General Genetics 259, 491–503.
| The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFOmu7Y%3D&md5=c9fdd28331b043477603ee9b78cb01d3CAS |
Tsyganov VE, Voroshilova VA, Herrera-Cervera JA, Sanjuan-Pinilla JM, Borisov AY, Tikhonovich IA, Priefer UB, Olivares J, Sanjuan J (2003) Developmental downregulation of rhizobial genes as a function of symbiosome differentiation in symbiotic root nodules of Pisum sativum. New Phytologist 159, 521–530.
| Developmental downregulation of rhizobial genes as a function of symbiosome differentiation in symbiotic root nodules of Pisum sativum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsl2rsb0%3D&md5=9f44f33a656851e9d21b5057d5e710a8CAS |
Tsyganova AV, Tsyganov VE, Borisov AY, Tikhonovich IA, Brewin NJ (2009) Comparative cytochemical analysis of hydrogen peroxide distribution in pea ineffective mutant SGEFix--1 (sym40) and initial line SGE. Ecological Genetics 7, 3–9.
Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Annual Review of Plant Biology 64, 781–805.
| Transport and metabolism in legume-rhizobia symbioses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXosFSku7w%3D&md5=07593e274bf3a377b09a7aacdf31119bCAS |
Van de Velde W, Pérez Guerra JC, De Keysler A, De Rycke R, Rombauts S, Maunoury N, Mergaert P (2006) Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula. Plant Physiology 141, 711–720.
| Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1aktLc%3D&md5=178e5e704ecc553d05fb0768a4f7520cCAS |
Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327, 1122–1126.
| Plant peptides govern terminal differentiation of bacteria in symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlaisrw%3D&md5=802f56e062d93a42e74f4b27669ee8feCAS |
Vernié T, Moreau S, de Billy F, Plet J, Combier JP, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P (2008) EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. The Plant Cell 20, 2696–2713.
| EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar |
Vinardell JM, Fedorova E, Cebolla A, Kevei Z, Horvath G, Kelemen Z, Tarayre S, Roudier F, Mergaert P, Kondorosi A, Kondorosi E (2003) Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules. The Plant Cell 15, 2093–2105.
| Endoreduplication mediated by the anaphase-promoting complex activator CCS52A is required for symbiotic cell differentiation in Medicago truncatula nodules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2gurw%3D&md5=56809cc5ac48bb0bbfe8b9398e25cff0CAS |
Wang D, Griffitts J, Starker C, Fedorova E, Limpens E, Ivanov S, Bisseling T, Long SA (2010) Nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science 327, 1126–1129.
| Nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitlaisr0%3D&md5=9ae9a7f25ac82f4f2cd76b3c8dbd0fbfCAS |
Wang C, Yu H, Luo L, Duan L, Cai L, He X, Wen J, Mysore KS, Li G, Xiao A, Duanmu D, Cao Y, Hong Z, Zhang Z (2016) NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula. New Phytologist 212, 176–191.
| NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhtl2ksb%2FE&md5=b0fb97277a7384bb239a7eaed7309d63CAS |
Woollard AA, Moore I (2008) The functions of Rab GTPases in plant membrane traffic. Current Opinion in Plant Biology 11, 610–619.
| The functions of Rab GTPases in plant membrane traffic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhsL7O&md5=9bf499f34210db4279faaa4a2c62a08aCAS |
Xi J, Chen Y, Nakashima J, Wang S, Chen R (2013) Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation. Molecular Plant–Microbe Interactions 26, 893–902.
| Medicago truncatula esn1 defines a genetic locus involved in nodule senescence and symbiotic nitrogen fixation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFejtL7E&md5=c58b290a028c73c006b6f2e78e8225e4CAS |
Yoon HJ, Hossain MS, Held M, Hou H, Kehl M, Tromas A, Sato S, Tabata S, Andersen SU, Stougaard J, Ross L, Szczyglowski K (2014) Lotus japonicus SUNERGOS1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection. The Plant Journal 78, 811–821.
| Lotus japonicus SUNERGOS1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXosFaiurc%3D&md5=aa4c54266afcbfa97ab6c249fe6dceb0CAS |