Sunpatiens compact hot coral: memristors in flowers
Alexander G. Volkov A B and Eunice K. Nyasani AA Department of Chemistry, Oakwood University, 7000 Adventist Blvd, Huntsville, AL 35896, USA.
B Corresponding author. Email: agvolkov@yahoo.com
This paper originates from a presentation at the Fourth International Symposium on Plant Signaling and Behavior, Komarov Botanical Institute RAS/Russian Science Foundation, Saint Petersburg, Russia, 19–23 June 2016.
Functional Plant Biology 45(2) 222-227 https://doi.org/10.1071/FP16326
Submitted: 21 September 2016 Accepted: 7 February 2017 Published: 16 March 2017
Abstract
Leon Chua postulated the theory of a memristor – a resistor with memory – in 1971, and the first solid-state memristor was built in 2008. Memristors exist in vivo as components of plasma membranes in plants, fruits, roots and seeds. A memristor is a nonlinear element; its current-voltage characteristic is similar to that of a Lissajous pattern. Here, we found memristors in flowers. Electrostimulation by bipolar periodic sinusoidal or triangular waves of an androecium, a spur, petals and a pedicel in Sunpatiens flowers induces hysteresis loops with a pinched point at low frequencies between 0.1 mHz and 1 mHz. At high frequencies, the pinched hysteresis loop transforms to a non-pinched hysteresis loop instead of a single line I = U/R for ideal memristors because the amplitude of electrical current depends on capacitance of a flower’s tissue and electrodes, frequency and direction of scanning. The discovery of memristors in Sunpatiens (Impatiens spp.) creates a new direction in the modelling and understanding of electrophysiological phenomena in flowers.
Additional keywords: Balsaminaceae, electrophysiology, Impatiens, memristor.
References
Bag A, Hota MK, Mallik S, Maiti CK (2014) Bipolar resistive switching in different plant and animal proteins. In ‘Proceedings of the 21st International Symposium on the Physics and Failure Analysis of Integrated Circuits (IPFA)’. pp. 203–206. (IEEE)Chua L (1971) Memristor – the missing circuit element. IEEE Transactions on Circuit Theory 18, 507–519.
| Memristor – the missing circuit element.Crossref | GoogleScholarGoogle Scholar |
Chua L, Sbitnev V, Kim H (2012) Hodgkin-Huxlew axon is made of memristors. International Journal of Bifurcation and Chaos 22, 1230011
| Hodgkin-Huxlew axon is made of memristors.Crossref | GoogleScholarGoogle Scholar |
Gale E, Adamatsky A, Costello BDL (2015) Slime mould memristors. BioNanoScience 5, 1–8.
| Slime mould memristors.Crossref | GoogleScholarGoogle Scholar |
Grey-Wilson C (1980) ‘Impatiens of Africa: morphology, pollination and pollinators, ecology, phytogeography.’ (AA Balkema: Rotterdam, The Netherlands)
Hota MK, Bera MK, Kundu B, Kundu SC (2012) A natural silk fibroin protein-based transparent bio-memristor. Advanced Functional Materials 22, 4493–4499.
| A natural silk fibroin protein-based transparent bio-memristor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xps1yjurs%3D&md5=f98ebe54190648290eb88886a965613eCAS |
Johnsen GK, Lutken CA, Martinsen OG, Grimnes S (2011) Memristive model of electro-osmosis in skin. Physical Review. E 83, 031916
| Memristive model of electro-osmosis in skin.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MvmtFOlsg%3D%3D&md5=ec53a8f95a3f9e86110314d28353c147CAS |
MacVittie K, Katz E (2013) Electrochemical systems with memimpedance properties. Journal of Physical Chemistry C 117, 24943–24947.
| Electrochemical systems with memimpedance properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslejsrnI&md5=e08ff772a58b57c3cdb9645e4dd7dd64CAS |
Markin VS, Volkov AG, Chua L (2014) An analytical model of memristors in plants. Plant Signaling and Behavior 9, e972887
| An analytical model of memristors in plants.Crossref | GoogleScholarGoogle Scholar |
Oguntimehin I, Kondo H, Sakugawa H (2010) The use of Sunpatiens (Impatiens spp.) as a bioindicator of some simulated air pollutants – using an ornamental plant as bioindicator. Chemosphere 81, 273–281.
| The use of Sunpatiens (Impatiens spp.) as a bioindicator of some simulated air pollutants – using an ornamental plant as bioindicator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtV2gur%2FF&md5=641c07b9eff626e9381546e2812ee11eCAS |
Pershin YV, La Fontaine S, Di Ventra M (2009) Memristive model of amoeba learning. Physical Review E 80, 021926
| Memristive model of amoeba learning.Crossref | GoogleScholarGoogle Scholar |
Sah M, Kim H, Chua L (2014) Brains are made of memristors. IEEE Circuits and Systems Magazine 14, 12–36.
| Brains are made of memristors.Crossref | GoogleScholarGoogle Scholar |
Volkov AG (2000) Green plants: electrochemical interfaces. Journal of Electroanalytical Chemistry 483, 150–156.
| Green plants: electrochemical interfaces.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVCiur8%3D&md5=cfac697183386174ef88b6d49f1352e4CAS |
Volkov AG (2012a) ‘Plant electrophysiology: methods and cell electrophysiology.’ (Springer: Berlin)
Volkov AG (2012b) ‘Plant electrophysiology: signaling and responses.’ (Springer: Berlin)
Volkov AG (2016) Biosensors, memristors and actuators in electrical networks of plants. International Journal of Parallel, Emergent and Distributed Systems 32, 44–55.
| Biosensors, memristors and actuators in electrical networks of plants.Crossref | GoogleScholarGoogle Scholar |
Volkov AG, Deamer DW, Tanelian DI, Markin VS (1998) ‘Liquid interfaces in chemistry and biology.’ (J. Wiley: New York)
Volkov AG, Carrell H, Markin VS (2009) Biologically closed electrical circuits in Venus flytrap. Plant Physiology 149, 1661–1667.
| Biologically closed electrical circuits in Venus flytrap.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1Wgtbk%3D&md5=d212bf0f2eb4c4c5f6d347e93e9f1355CAS |
Volkov AG, Forde-Tuckett V, Reedus J, Mitchell CM, Volkova MI, Markin VS, Chua L (2014a) Memristors in the Venus flytrap. Plant Signaling & Behavior 9, e29204
| Memristors in the Venus flytrap.Crossref | GoogleScholarGoogle Scholar |
Volkov AG, Reedus J, Mitchell CM, Tuckett C, Forde-Tuckett V, Volkova MI, Markin VS, Chua L (2014b) Memristor in the electrical network of Aloe vera L. Plant Signaling & Behavior 9, e29056
| Memristor in the electrical network of Aloe vera L.Crossref | GoogleScholarGoogle Scholar |
Volkov AG, Reedus J, Mitchell CM, Tuckett C, Volkova MI, Markin VS, Chua L (2014c) Memory elements in the electrical network of Mimosa pudica L. Plant Signaling & Behavior 9, e982029
| Memory elements in the electrical network of Mimosa pudica L.Crossref | GoogleScholarGoogle Scholar |
Volkov AG, Tuckett C, Reedus J, Volkova MI, Markin VS, Chua L (2014d) Memristors in plants. Plant Signaling & Behavior 9, e28152
| Memristors in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXjtFygtL4%3D&md5=9f3ca75f443605197dc13cf26c957a83CAS |
Volkov AG, Nyasani EK, Blockmon AL, Volkova MI (2015) Memristors: memory elements in potato tubers. Plant Signaling & Behavior 10, e1071750
| Memristors: memory elements in potato tubers.Crossref | GoogleScholarGoogle Scholar |
Volkov AG, Nyasani EK, Tuckett C, Greeman EA, Markin VS (2016a) Electrophysiology of pumpkin seeds: memristors in vivo. Plant Signaling & Behavior 11, e1151600
| Electrophysiology of pumpkin seeds: memristors in vivo.Crossref | GoogleScholarGoogle Scholar |
Volkov AG, Nyasani EK, Tuckett C, Blockmon AL, Reedus J, Volkova MI (2016b) Cyclic voltammetry of apple fruits: memristors in vivo. Bioelectrochemistry 112, 9–15.
| Cyclic voltammetry of apple fruits: memristors in vivo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhtFGjt7vJ&md5=ae0657083e309e24c10c6b97e47ca877CAS |
Wagner E, Lehner L, Weit J, Norman J, Albrechtova JTP (2012) Biosystems analysis of plant development concerning photoperiodic flower induction by hydro-electrochemical signal transduction. In ‘Plant electrophysiology: signaling and responses’. (Ed. AG Volkov) pp. 281–301. (Springer: Berlin)