Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Natural variation in primary root growth and K+ retention in roots of habanero pepper (Capsicum chinense) under salt stress

Emanuel Bojórquez-Quintal A C , Nancy Ruiz-Lau A D , Ana Velarde-Buendía B , Ileana Echevarría-Machado A , Igor Pottosin B and Manuel Martínez-Estévez A E
+ Author Affiliations
- Author Affiliations

A Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Yucatán, México.

B Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México.

C CONACYT-Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, La Piedad, Michoacán.

D CONACYT-Instituto Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, México.

E Corresponding author. Email: luismanh@cicy.mx

Functional Plant Biology 43(12) 1114-1125 https://doi.org/10.1071/FP15391
Submitted: 26 December 2015  Accepted: 24 July 2016   Published: 19 August 2016

Abstract

In this work, we analysed the natural variation in mechanisms for protection against salt stress in pepper varieties (Capsicum chinense Jacq. cv. Rex, Chichen-Itza and Naranja and Capsicum annuum L. cv. Padron), considering primary root growth and viability of the post-stressed seedlings. NaCl-induced K+ and H+ efflux in roots was also studied by ion-selective microelectrodes under application of pharmacological agents. In these pepper varieties, the magnitude of the K+ leakage in the roots positively correlated with growth inhibition of the primary root in the presence of NaCl, with Rex variety showing a higher level of tolerance than Chichen-Itza. The K+ leakage and the activity of the H+ pump in the roots were dependent on the NaCl concentration. Pharmacological analysis indicated that the NaCl-induced K+ leakage was mediated by TEA+-sensitive KOR channels but not by NSCC channels. In addition, we present evidence for the possible participation of proline, and a Na+-insensitive HAK K+ transporter expressed in habanero pepper roots for maintaining K+ homeostasis under salt stress conditions.

Additional keywords: Capsicum annuum, Capsicum chinense, ion-selective electrodes, K+ retention, K+ efflux, primary root.


References

Ahmad I, Maathuis FJM (2014) Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation. Journal of Plant Physiology 171, 708–714.
Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1Wlsbk%3D&md5=aafbdb6e8ded0ce646c974efbe1dfff6CAS | 24810768PubMed |

Aktas H, Abak K, Cakmak I (2006) Genotypic variation in the response of pepper to salinity. Scientia Horticulturae 110, 260–266.
Genotypic variation in the response of pepper to salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVygtrfN&md5=945629b7db74e8ea54bbb4edc45eeb1aCAS |

Almeida P, Katschnig D, de Boer AH (2013) HKT transporters-state of the art. International Journal of Molecular Sciences 14, 20359–20385.
HKT transporters-state of the art.Crossref | GoogleScholarGoogle Scholar | 24129173PubMed |

Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? The Plant Cell 21, 1877–1896.
What has natural variation taught us about plant development, physiology, and adaptation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFehtrnL&md5=9a2d245311e2db2f392b56c0a1ec98e2CAS | 19574434PubMed |

Amtmann A, Beilby MJ (2010) The role of ion channels in plant salt tolerance. In ‘Ion channels and plant stress responses, signaling and communication in plants’. (Eds V Demidchik, F Maathuis) p. 23–46. (Springer-Verlag: Berlin)

Anschütz U, Becker D, Shabala S (2014) Going beyond nutrition: regulation of potassium homeostasis as a common denominator of plant adaptive responses to environment. Journal of Plant Physiology 171, 670–687.
Going beyond nutrition: regulation of potassium homeostasis as a common denominator of plant adaptive responses to environment.Crossref | GoogleScholarGoogle Scholar | 24635902PubMed |

Ariel F, Diet A, Verdenaud M, Gruber V, Frugier F, Chan R, Crespi M (2010) Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1. The Plant Cell 22, 2171–2183.
Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKrtLfN&md5=cb520e6df613f5ccd5dfe4f91d351328CAS | 20675575PubMed |

Bates LS, Waldren RP, Teare D (1973) Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205–207.
Rapid determination of free proline for water-stress studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXlsVGitLk%3D&md5=f69aae8cde3f79d37f2fd0f5a4ebaa26CAS |

Baxter I (2010) Ionomics: the functional genomics of elements. Briefings in Functional Genomics 9, 149–156.
Ionomics: the functional genomics of elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvF2hu7g%3D&md5=28d4d64295953bd381cc7f036fece5cfCAS | 20081216PubMed |

Bojórquez-Quintal JEA (2015) Mecanismos de tolerancia a salinidad en plántulas de chile habanero (Capsicum chinense Jacq.). Tesis de Doctorado. Centro de Investigación Científica de Yucatán, Mérida, México.

Bojórquez-Quintal JE, Echevarría-Machado I, Medina-Lara F, Martínez-Estévez M (2012) Plants challenges in a salinized world: the case of Capsicum. African Journal of Biotechnology 11, 13614–13626.
Plants challenges in a salinized world: the case of Capsicum.Crossref | GoogleScholarGoogle Scholar |

Bojórquez-Quintal JEA, Sánchez-Cach LA, Ku-Gonzalez A, de los Santos-Briones C, Medina-Lara MF, Echevarria-Machado I, Muñoz-Sanchez JA, Hernandez-Sotomayor SMT, Martinez-Estevez M (2014a) Differential effects of aluminum on in vitro primary root growth, nutrient content and phospholipase C activity in coffee seedlings (Coffea arabica). Journal of Inorganic Biochemistry 134, 39–48.
Differential effects of aluminum on in vitro primary root growth, nutrient content and phospholipase C activity in coffee seedlings (Coffea arabica).Crossref | GoogleScholarGoogle Scholar |

Bojórquez-Quintal E, Velarde-Buendía A, Ku-González A, Carrillo-Pech M, Ortega-Camacho D, Echevarría-Machado I, Pottosin I, Martínez-Estévez M (2014b) Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Frontiers in Plant Science 5, 605

Bose J, Xie Y, Shen W, Shabala S (2013) Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots. Journal of Experimental Botany 64, 471–481.
Haem oxygenase modifies salinity tolerance in Arabidopsis by controlling K+ retention via regulation of the plasma membrane H+-ATPase and by altering SOS1 transcript levels in roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVGrsA%3D%3D&md5=5e2a903aa2527ecea0f4446e91050971CAS | 23307916PubMed |

Bose J, Shabala L, Pottosin I, Zeng F, Velarde-Buendía AM, Massart A, Poschenrieder C, Hariadi Y, Shabala S (2014) Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley. Plant, Cell & Environment 37, 589–600.
Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlaksL4%3D&md5=f2dfac704903f1d874dd58e2b44f127fCAS |

Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2015) Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Annals of Botany 115, 481–494.
Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa.Crossref | GoogleScholarGoogle Scholar | 25471095PubMed |

Brunelli JP, Pall ML (1993) A series of yeast shuttle vectors for expression of cDNAs and other DNA sequences. Yeast 9, 1299–1308.
A series of yeast shuttle vectors for expression of cDNAs and other DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitV2ltrk%3D&md5=6d27c1fdcb33053f6a7db989ba21467aCAS | 8154181PubMed |

Chao DY, Dilkes B, Luo H, Douglas A, Yakubova E, Lahner B, Salt DE (2013) Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis. Science 341, 658–659.
Polyploids exhibit higher potassium uptake and salinity tolerance in Arabidopsis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1WqtbvI&md5=856c016423cbbe70fdf865e4d0b3de24CAS | 23887874PubMed |

Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S (2005) Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant, Cell & Environment 28, 1230–1246.
Screening plants for salt tolerance by measuring K+ flux: a case study for barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFGitbnE&md5=8de0795123844635e118c78e34e66cecCAS |

Chen Z, Cuin TA, Zhou M, Twomey A, Naidu BP, Shabala S (2007a) Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany 58, 4245–4255.
Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlymurg%3D&md5=38dc35efe34c74d485455b3ae524c8a1CAS | 18182428PubMed |

Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007b) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiology 145, 1714–1725.
Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVCntbvP&md5=ae32ae5378278d4f482b688f4a4a8178CAS | 17965172PubMed |

Coskun D, Britto DT, Jean YK, Kabir I, Tolay I, Torum AA, Kronzucker HJ (2013) K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.). PLoS One 8, e57767
K+ efflux and retention in response to NaCl stress do not predict salt tolerance in contrasting genotypes of rice (Oryza sativa L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvFGqtbs%3D&md5=75181d292c3df276ff4dda3930f3a5c2CAS | 23460903PubMed |

Cuin TA, Shabala S (2005) Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant & Cell Physiology 46, 1924–1933.
Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVOiug%3D%3D&md5=6216d91ba6cd0c059d20f170efe4accdCAS |

Cuin TA, Shabala S (2007a) Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 225, 753–761.
Amino acids regulate salinity-induced potassium efflux in barley root epidermis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yht7s%3D&md5=ec8a3c61bf08c6a2dcd19e88fbde10d3CAS | 16955270PubMed |

Cuin TA, Shabala S (2007b) Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant, Cell & Environment 30, 875–885.
Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvFGiur4%3D&md5=4f5718440faaa058cbbf3529709d3e7dCAS |

Cuin TA, Miller AJ, Laurie SA, Leigh RA (2003) Potassium activities in cell compartments of salt-grown barley leaves. Journal of Experimental Botany 54, 657–661.
Potassium activities in cell compartments of salt-grown barley leaves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXit1arurw%3D&md5=ae6201f14483561065098148737f8394CAS | 12554708PubMed |

Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. Journal of Experimental Botany 59, 2697–2706.
A root’s ability to retain K+ correlates with salt tolerance in wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXot1WisLg%3D&md5=0c715907277ae6da4712c050d433a516CAS | 18495637PubMed |

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends in Plant Science 19, 371–379.
Plant salt-tolerance mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXksVWmsb8%3D&md5=0e72eb61fed69684d0e9b09a857d0643CAS | 24630845PubMed |

Demidchik V (2014) Mechanisms and physiological roles of K+ efflux from root cells. Journal of Plant Physiology 171, 696–707.
Mechanisms and physiological roles of K+ efflux from root cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXlt1Cjsb8%3D&md5=14357f88f18a41583715e9bba0aeef61CAS | 24685330PubMed |

Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. New Phytologist 175, 387–404.
Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpvFSqs7w%3D&md5=28f18af110308042d50ac9b976eb612bCAS | 17635215PubMed |

Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science 123, 1468–1479.
Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnt1KmtL0%3D&md5=7b1ad2f920309e6e0948c07f83dc596cCAS | 20375061PubMed |

Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. Journal of Experimental Botany 65, 1259–1270.
Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks12htb4%3D&md5=9e1e76be99823c1d85227ad66fdd974dCAS | 24520019PubMed |

Duan L, Dietrich D, Han Ng C, Yeen Chan PM, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. The Plant Cell 25, 324–341.
Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntVCktrY%3D&md5=630e1b98e00656e3885224f4c18a8459CAS | 23341337PubMed |

Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Testerink C (2013) Halotropism is a response of plant roots to avoid a saline environment. Current Biology 23, 2044–2050.
Halotropism is a response of plant roots to avoid a saline environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOlsbvM&md5=d32857cfac4d3b9080d4069d1c95176bCAS | 24094855PubMed |

Haro R, Rodríguez-Navarro A (2003) Functional analysis of the M2D hélix of the TRK1 potassium transporter of Saccharomyces cerevisiae. Biochimica et Biophysica Acta 1613, 1–6.
Functional analysis of the M2D hélix of the TRK1 potassium transporter of Saccharomyces cerevisiae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVGqtrk%3D&md5=30ea760ec0e99f2bcde9e5b2b1aa145fCAS | 12832081PubMed |

He XJ, Mu RL, Cao WH, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal 44, 903–916.
AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslGmuw%3D%3D&md5=b0e8a749bba81be4d73f8ee538d928a3CAS | 16359384PubMed |

Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H (2011) Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. Journal of Bioscience and Bioengineering 111, 346–356.
Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmslOgsL8%3D&md5=560ea44a904b106395b6c4fe76cdac91CAS | 21084222PubMed |

Jiang K, Moe-Lange J, Hennet L, Feldman LJ (2016) Salt stress affects the redox status of Arabidopsis root meristems. Frontiers in Plant Science 7, 81
Salt stress affects the redox status of Arabidopsis root meristems.Crossref | GoogleScholarGoogle Scholar | 26904053PubMed |

Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends in Plant Science 20, 586–594.
Tuning plant signaling and growth to survive salt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtFKisrfK&md5=72b12b8b5b7700b6647401a3761caaebCAS | 26205171PubMed |

Julkowska MM, Hoefsloot HCJ, Mol S, Feron R, de Boer GJ, Haring MA, Testerink C (2014) Capturing Arabidopsis root architecture dynamics with root-fit reveals diversity in responses to salinity. Plant Physiology 166, 1387–1402.
Capturing Arabidopsis root architecture dynamics with root-fit reveals diversity in responses to salinity.Crossref | GoogleScholarGoogle Scholar | 25271266PubMed |

Jung JK, McCouch S (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Frontiers in Plant Science 4, 186
Getting to the roots of it: genetic and hormonal control of root architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtlGjtbjF&md5=9419db1d97862a11908e0792f5551623CAS | 23785372PubMed |

Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science
Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes.Crossref | GoogleScholarGoogle Scholar | 26284080PubMed |

Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theoretical and Applied Genetics 108, 253–260.
QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFCntg%3D%3D&md5=db40f80ce3910643340354ff8d4ff5f2CAS | 14513218PubMed |

Liu J, Zhu JK (1997) An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance. Proceedings of the National Academy of Sciences of the United States of America 94, 14960–14964.
An Arabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXis12mug%3D%3D&md5=0cccc6d2ff0d7dd13688dde15b11b3c4CAS | 9405721PubMed |

Lu Y, Li N, Sun J, Hou P, Jing X, Zhu H, Deng S, Han Y, Huang X, Ma X, Zhao N, Zhang Y, Shen X, Chen S (2013) Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress. Tree Physiology 33, 81–95.
Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress.Crossref | GoogleScholarGoogle Scholar | 23264032PubMed |

Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Annals of Botany 84, 123–133.
K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVCgtL4%3D&md5=7b0272dc18f4dea0e544b93e8adad5f5CAS |

Munns R, Gilliham M (2015) Salinity tolerance of crops – what is the cost? New Phytologist 208, 668–673.
Salinity tolerance of crops – what is the cost?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs12lsrzF&md5=2f335d2d51fd319d9cf3ddcd06668140CAS | 26108441PubMed |

Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant, Cell & Environment 24, 1–14.
Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlygu7g%3D&md5=abce4a0f01888ab2e2b7ce083dd2a5d0CAS |

Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2010) The Arabidopsis thaliana HAK5 K+ transporter is required for the plant growth and K+ acquisition from low K+ solutions under saline conditions. Molecular Plant 3, 326–333.
The Arabidopsis thaliana HAK5 K+ transporter is required for the plant growth and K+ acquisition from low K+ solutions under saline conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvF2js7s%3D&md5=c818b08708d8bccaabce3634f6d68901CAS | 20028724PubMed |

Nieves-Cordones M, Aleman F, Martínez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. Journal of Plant Physiology 171, 688–695.
K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXns1Wrt7Y%3D&md5=ac6ba7807b013bc4b17bf6baf7156599CAS | 24810767PubMed |

Palmgren M, Nissen P (2011) P-type ATPases. Annual Review of Biophysics 40, 243–266.
P-type ATPases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFaiur8%3D&md5=654213bafa72adced71e986441b5ed42CAS | 21351879PubMed |

Rahnama A, Munns R, Poustini K, Watt M (2011) A screening method to identify genetic variation in root growth response to a salinity gradient. Journal of Experimental Botany 62, 69–77.
A screening method to identify genetic variation in root growth response to a salinity gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFamurfP&md5=d0efac58d4e396cf5fbfd1df85680d22CAS | 21118825PubMed |

Ristova D, Busch W (2014) Natural variation of root traits: from development to nutrient uptake. Plant Physiology 166, 518–527.
Natural variation of root traits: from development to nutrient uptake.Crossref | GoogleScholarGoogle Scholar | 25104725PubMed |

Rodríguez-Navarro A, Ramos J (1984) Dual system for potassium transport in Saccharomyces cerevisiae. Journal of Bacteriology 159, 940–945.

Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Current Opinion in Biotechnology 32, 93–98.
Regulation of plant root system architecture: implications for crop advancement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvF2mt7fF&md5=b2808e14af7a21fffc4c88306ff2564fCAS | 25448235PubMed |

Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annual Review of Plant Biology 59, 709–733.
Ionomics and the study of the plant ionome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtro%3D&md5=564532ce7f60e39211c7503e8daa65b8CAS | 18251712PubMed |

Sanadhya P, Agarwal P, Agarwal PK (2015) Ion homeostasis in a salt-secreting halophytic grass. AoB Plants 7, plv055
Ion homeostasis in a salt-secreting halophytic grass.Crossref | GoogleScholarGoogle Scholar | 25990364PubMed |

Sano T, Becker D, Ivashikina N, Wegner LH, Zimmermann U, Roelfsema MR, Nagata T, Hedrich R (2007) Plant cells must pass a K+ threshold to re-enter the cell cycle. The Plant Journal 50, 401–413.
Plant cells must pass a K+ threshold to re-enter the cell cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsVarsr8%3D&md5=5ddcec7919b0eeb69a421944be32411eCAS | 17425714PubMed |

Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiologia Plantarum 133, 651–669.
Potassium transport and plant salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXps1Oit70%3D&md5=e3b7086a1c0639a11d71b2068d781bd9CAS | 18724408PubMed |

Shabala S, Pottosin I (2014) Regulations of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum 151, 257–279.
Regulations of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXps1OjtL0%3D&md5=a0acade96ec4a194c130a751673c8ed0CAS | 24506225PubMed |

Shabala S, Shabala L (2011) Ion transport and osmotic adjustment in plants and bacteria. Biomol. Concepts 2, 407–419.

Shabala S, Bose J, Fuglsang AT, Pottosin I (2015) On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. Journal of Experimental Botany
On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils.Crossref | GoogleScholarGoogle Scholar | 26585227PubMed |

Smethurst CF, Rix K, Garnett T, Auricht G, Bayart A, Lane P, Wilson SJ, Shabala S (2008) Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms. Functional Plant Biology 35, 640–650.
Multiple traits associated with salt tolerance in lucerne: revealing the underlying cellular mechanisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSrsrrN&md5=58457d63ba3c01c3bed5028e230f05d7CAS |

Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiology 29, 1175–1186.
Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGrs7bJ&md5=3435ad4a2ee90a63b632bc533cdb6daeCAS | 19638360PubMed |

Sun Y, Kong X, Li Y, Ding Z (2015) Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions. PLoS One 10, e0124032
Potassium retention under salt stress is associated with natural variation in salinity tolerance among Arabidopsis accessions.Crossref | GoogleScholarGoogle Scholar | 25993093PubMed |

Urrego D, Tomczak AP, Zahed F, Stuhmer W, Pardo LA (2014) Potassium channels in cell cycle and cell proliferation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369, 20130094
Potassium channels in cell cycle and cell proliferation.Crossref | GoogleScholarGoogle Scholar | 24493742PubMed |

Véry AA, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H (2014) Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? Journal of Plant Physiology 171, 748–769.
Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species?Crossref | GoogleScholarGoogle Scholar | 24666983PubMed |

Volkov V (2015) Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science 6, 873
Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes.Crossref | GoogleScholarGoogle Scholar | 26579140PubMed |

Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. International Journal of Molecular Sciences 14, 7370–7390.
The critical role of potassium in plant stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtFWktrc%3D&md5=5679d639b0c8130107971005f07dd127CAS | 23549270PubMed |

West G, Inzè D, Beemster GTS (2004) Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiology 135, 1050–1058.
Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltlKis70%3D&md5=b5ce812487e36e9aba1b3dc390f6ebc7CAS | 15181207PubMed |

Wu H, Zhu M, Shabala L, Zhou M, Shabala S (2015) K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley. Journal of Integrative Plant Biology 57, 171–185.
K+ retention in leaf mesophyll, an overlooked component of salinity tolerance mechanism: a case study for barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvFegsbs%3D&md5=61ff9f7c320ce6a5d736c6d9e99c432bCAS | 25040138PubMed |

Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L, Xu G (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology 166, 945–959.
The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels.Crossref | GoogleScholarGoogle Scholar | 25157029PubMed |

Zepeda-Jazo I, Shabala S, Chen Z, Pottosin I (2008) Na+-K+ transport in roots under salt stress. Plant Signaling & Behavior 3, 401–403.
Na+-K+ transport in roots under salt stress.Crossref | GoogleScholarGoogle Scholar |

Zolla G, Heimer YM, Barak S (2010) Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. Journal of Experimental Botany 61, 211–224.
Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFGgu7fF&md5=9d4a78fcf97119020ece4541c806fd13CAS | 19783843PubMed |