Potassium enhances frost tolerance in young individuals of three tropical dry forest species from Mexico
Pilar A. Gómez-Ruiz A , Roberto Lindig-Cisneros A C , Erick de la Barrera A and Carlos Martorell BA Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), Universidad Nacional Autónoma de México, Campus Morelia, Michoacán, C.P. 58190, México.
B Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, México.
C Corresponding author. Email: rlindig@cieco.unam.mx
Functional Plant Biology 43(5) 461-467 https://doi.org/10.1071/FP15329
Submitted: 26 February 2015 Accepted: 20 January 2016 Published: 24 February 2016
Abstract
Movement of species outside their range of distribution could be a strategy for conservation purposes, but before implementation, it is necessary to evaluate plants responses to the conditions that they will experience in new locations. We evaluated the effect of potassium fertilisation to enhance the frost tolerance of young individuals of Albizia plurijuga (Standley) Britton & Rose, Cedrela dugesii S.Watson and Ceiba aesculifolia (Kunth) Britten & Baker f., which are all common species from tropical dry forests in Mexico. Plants were propagated in a shade-house and fertilised during 9 months with different concentrations of potassium (39, 189 and 528 ppm). In frost simulations, plants were exposed to temperatures below 0°C during different time periods and frost injury was assessed by electrolyte leakage of leaf discs from young and old leaves. We observed that potassium fertilisation enhanced frost tolerance by reducing electrolyte leakage mainly in young leaves. We recorded plant re-sprouting ability after exposure to subzero temperatures over 45 days, finding notable differences among species: all individuals of C. dugesii sprouted, followed by some of A. plurijuga and finally just one of C. aesculifolia. Also, high potassium levels increased re-sprouting response. These species have a low frost tolerance, but potassium fertilisation seemed to be effective to enhance it for young individuals, increasing the probability of survival if plants are moved to colder areas than current habitats.
Additional keywords: electrolyte leakage, potassium fertilisation, sprouting ability, woody species.
References
Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259, 660–684.| A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Crossref | GoogleScholarGoogle Scholar |
Andrade G, Calderón de Rzedowski G, Camargo S, Grether R, Hernández H, Martinez A, Rico L, Rzedowski J (2007) Familia Leguminosae. Subfamilia Mimosoideae. In ‘Flora del Bajío y de regiones adyacentes’. pp. 1–229. (INECOL: Paztcuaro, Mich. Mexico)
Atkin O, Bruhn D, Hurry V, Tjoelker M (2005) The hot and the cold: unravelling the variable response of plant respiration to temperature. Functional Plant Biology 32, 87–105.
| The hot and the cold: unravelling the variable response of plant respiration to temperature.Crossref | GoogleScholarGoogle Scholar |
Beringer H, Troldenier G (1980) The influence of K nutrition on the response of plants to environmental stress. In ‘Potassium research and trends’. pp. 189–222. (International Potash Institute: Bern, Switzerland)
Bond WJ, Midgley JJ (2003) The evolutionary ecology of sprouting in woody plants. International Journal of Plant Sciences 164, S103–S114.
| The evolutionary ecology of sprouting in woody plants.Crossref | GoogleScholarGoogle Scholar |
Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science 168, 521–530.
| The role of potassium in alleviating detrimental effects of abiotic stresses in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpsFCntL8%3D&md5=5c048e996446f5be000680cfb41efc87CAS |
Calderón de Rzedowski G, Germán M (1993) Familia Meliaceae. In ‘Flora del Bajío y de regiones adyacentes’. pp. 1–22. (INECOL: Paztcuaro, Mich. Mexico)
Carranza E, Blanco-García A (2000) Familia Bombacaceae. In ‘Flora del Bajío y de regiones adyacentes’. pp. 1–16. (INECOL: Paztcuaro, Mich. Mexico)
Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005) Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytologist 168, 597–612.
| Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mnjtl2qsA%3D%3D&md5=74cfe4231f8a76992c2dadea41e2f33bCAS | 16313643PubMed |
Charles-Dominique T, Beckett H, Midgley GF, Bond WJ (2015) Bud protection: a key trait for species sorting in a forest–savanna mosaic. New Phytologist 207, 1052–1060.
| Bud protection: a key trait for species sorting in a forest–savanna mosaic.Crossref | GoogleScholarGoogle Scholar | 25856385PubMed |
Charrier G, Améglio T (2011) The timing of leaf fall affects cold acclimation by interactions with air temperature through water and carbohydrate contents. Environmental and Experimental Botany 72, 351–357.
| The timing of leaf fall affects cold acclimation by interactions with air temperature through water and carbohydrate contents.Crossref | GoogleScholarGoogle Scholar |
Charrier G, Charra-Vaskou K, Kasuga J, Cochard H, Mayr S, Améglio T (2014) Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms. Plant Physiology 164, 992–998.
| Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXks1Smu7k%3D&md5=beb53d46fd24018cd5b87a14975f10d3CAS | 24344170PubMed |
Charrier G, Ngao J, Saudreau M, Améglio T (2015) Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees. Frontiers in Plant Science 6,
| Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees.Crossref | GoogleScholarGoogle Scholar | 25972877PubMed |
Christensen J, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli R, Kwon W, Laprise R, Magaña-Rueda V, Mearns L, Menéndez C, Raisanen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. ‘Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. (Eds S Solomon, D Qin, M Manning, Z Chen, M Marquis, K Averyt, M Tignor, H Miller) (Cambridge University Press: New York)
Cornelissen J, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich D, Reich P, ter Steege H, Morgan H, van der Heijden M, Pausas J, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51, 335–380.
| A handbook of protocols for standardised and easy measurement of plant functional traits worldwide.Crossref | GoogleScholarGoogle Scholar |
Del Tredici P (2001) Sprouting in Temperate Trees: A Morphological and Ecological Review. Botanical Review 67, 121–140.
| Sprouting in Temperate Trees: A Morphological and Ecological Review.Crossref | GoogleScholarGoogle Scholar |
Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends in Ecology & Evolution 14, 11–16.
Encino-Ruiz L, Lindig-Cisneros R, Gómez-Romero M, Blanco-García A (2014) Desempeño de tres especies arbóreas del bosque tropical caducifolio en un ensayo de restauración ecológica. Botanical Sciences 91, 107–114.
| Desempeño de tres especies arbóreas del bosque tropical caducifolio en un ensayo de restauración ecológica.Crossref | GoogleScholarGoogle Scholar |
Garcia M de los Á, De La Peña C (2013) Respuesta a la fertilización de otoño en plantaciones de eucalipto en Entre Ríos. Quebracho Revista de Ciencias Forestales 21, 16–25.
García-Ruiz I, Linares-Linares A (2012) ‘Árboles y arbustos de la Cuenca del río Tepalcatepec (Michoacán y Jalisco, México) para uso urbano.’ (Instituto Politécnico Nacional: CIIDIR Unidad Michoacán)
Gentry A (1995) Diversity and floristic composition of Neotropical dry forest. In ‘Seasonally dry tropical forests’. (Eds SH Bullock, HA Mooney, E Medina) pp. 146–194. (Cambridge University Press: Cambridge)
Glenn-Lewin DC, Van der Maarel E (1992) Patterns and processes of vegetation dynamics. In ‘Plant succession: theory and prediction’. (Eds DC Glenn-Lewin, RK Peet, TT Veblen) pp. 12–59. (Springer Science & Business Media: New York)
González-Espinosa M (1998) The IUCN Red List of threatened species. Ver. 2014.3. Albizia plurijuga. Available at: www.iucnredlist.org [Verified 8 February 2016]
Grewal JS, Singh SN (1980) Effect of potassium nutrition on frost damage and yield of potato plants on alluvial soils of the Punjab (India). Plant and Soil 57, 105–110.
| Effect of potassium nutrition on frost damage and yield of potato plants on alluvial soils of the Punjab (India).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXks1Witg%3D%3D&md5=5df220777449383c39c5c536381040cbCAS |
Hakerlerker H, Oktay M, Eryuce N, Yagmur B (1997) Effect of potassium sources on the chilling tolerance of some vegetable seedlings grown in hotbeds. In ‘Food Security in the WANA Region, the Essential Need for Balanced Fertilization’. (Ed. A. E. Johnston) pp. 353–359. (International Potash Institute: Basel, Switzerland)
Hernández-Oria JG (2007) Desaparición del Bosque Seco en El Bajío mexicano: implicaciones del ensamblaje de especies y grupos funcionales en la dinámica de una vegetación amenazada. Zonas Áridas pp. 13–31.
Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecology Letters 3, 457–463.
| The ecological and evolutionary significance of frost in the context of climate change.Crossref | GoogleScholarGoogle Scholar |
IPCC (2013) ‘Climate change 2013: the physical science basis : Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: Cambridge)
Kreyling J, Bittner T, Jaeschke A, Jentsch A, Jonas Steinbauer M, Thiel D, Beierkuhnlein C (2011) Assisted colonization: a question of focal units and recipient localities. Restoration Ecology 19, 433–440.
| Assisted colonization: a question of focal units and recipient localities.Crossref | GoogleScholarGoogle Scholar |
Levitt J (1980) ‘Responses of plants to environmental stresses. Vol. 1: Chilling, freezing, and high temperature stresses.’ (2nd edn) (Academic Press: NY)
Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444, 139–158.
| Cold, salinity and drought stresses: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Olt7fI&md5=a00ca133fe7ac00a857c39a454965f12CAS | 16309626PubMed |
Nobel PS (1982) Low-temperature tolerance and cold hardening of cacti. Ecology 63, 1650–1656.
| Low-temperature tolerance and cold hardening of cacti.Crossref | GoogleScholarGoogle Scholar |
Nobel PS, De la Barrera E (2003) Tolerances and acclimation to low and high temperatures for cladodes, fruits and roots of a widely cultivated cactus, Opuntia ficus-indica. New Phytologist 157, 271–279.
| Tolerances and acclimation to low and high temperatures for cladodes, fruits and roots of a widely cultivated cactus, Opuntia ficus-indica.Crossref | GoogleScholarGoogle Scholar |
Parker J (1963) Cold resistance in woody plants. Botanical Review 29, 123–201.
| Cold resistance in woody plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3sXktlOjur8%3D&md5=24ccc93c39cc1a63598e0c352fe3c9d9CAS |
Pearce R (2001) Plant freezing and damage. Annals of Botany 87, 417–424.
| Plant freezing and damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhvFWgtLo%3D&md5=76d07846ab045f61ed7003d30afde3f9CAS |
Quezel P, Medail F (2003) ‘Ecologie et biogéographie des forêts du bassin méditerranéen.’ (Elsevier: Paris, Francia)
Ramírez-Cuevas Y, Rodríguez-Trejo DA (2010) Resistencia a bajas temperaturas en Pinus hartwegii sometido a diferentes tratamientos con potasio. Revista Chapingo Serie Ciencias Forestales y del Ambiente XVI, 79–85.
| Resistencia a bajas temperaturas en Pinus hartwegii sometido a diferentes tratamientos con potasio.Crossref | GoogleScholarGoogle Scholar |
Rzedowski J (2006) ‘Vegetación de México. 1ra versión digital.’ (CONABIO: Mexico City)
Rzedowski J, Calderón de Rzedowski G (1987) El bosque tropical caducifolio de la región mexicana del Bajío. Trace 12, 12–21.
Rzedowski J, McVaugh R (1966) La vegetación de Nueva Galicia. Contributions from the University of Michigan Herbarium IX, 1–123.
Sakai A, Larcher W (1987) ‘Frost survival of plants. Responses and adaptation to freezing stress.’ (Springer-Verlag: Berlin)
Sánchez-Velásquez LR, Hernández G, Carranza M, Pineda-López MR, Cuevas R, Aragón F (2002) Estructura arbórea del bosque tropical caducifolio usado para la ganadería extensiva en el norte de la Sierra de Manantlán, México: Antagonismo de usos. Polibotánica 13, 25–46.
SEMARNAT (2010) Norma Oficial Mexicana NOM-059-SEMARNAT-2010: Protección ambiental-especies nativas de México de flora y fauna silvestres-categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Available at: http://bva.colech.edu.mx/xmlui/handle/1/1306 [Verified 8 February 2016]
Singer S, El-Tohamy W, Hadid A, Makhart A, Li P (1996) Chilling and water stress injury in bean (Phaseolus vulgaris L.) seedlings reduced by pretreatment with CaCl2, mefluidide, KCl and MgCl2. Egyptian Journal of Horticulture Research 23, 77–87.
Snyder RL, de Melo-Abreu JP (2005) ‘Frost protection: fundamentals, practice and economics. Vol. 1.’ (FAO: Rome)
Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. International Journal of Molecular Sciences 14, 7370–7390.
| The critical role of potassium in plant stress response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtFWktrc%3D&md5=5679d639b0c8130107971005f07dd127CAS | 23549270PubMed |
Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, Cook ER, Gangodagamage C, Cai M, McDowell NG (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 3, 292–297.
| Temperature as a potent driver of regional forest drought stress and tree mortality.Crossref | GoogleScholarGoogle Scholar |